If the radius of convergence of $sum^{infty}_{n=1}a_n x^n$ is $R$, what is the radius of convergence of...












1












$begingroup$


If the radius of convergence of $sum^{infty}_{n=1}a_n x^n$ is $R$, what is the radius of convergence of $sum^{infty}_{n=1}a_n x^{n!}$.



My trial



begin{align} limsuplimits_{nto infty} sqrt[n]{|a_n x^{n!}|}&=limsuplimits_{nto infty} sqrt[n]{|a_n |}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}\&=dfrac{1}{R}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}< 1end{align}
This implies that



begin{align} limlimits_{nto infty} sqrt[n]{|x|^{n!}}< R&implies ;{|x|^{(n-1)!}}< R,;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}< R^{1/(n-1)!},;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}leq 1,;;text{as};nto infty.end{align}
I'm I correct? If yes, can I say that the radius of convergence $1?$. If no, can anyone help out or provide a hint?










share|cite|improve this question











$endgroup$












  • $begingroup$
    If your ultimate conclusion is $1$, then you are correct, but the approach is shaky. Radius of convergence is a constant that does not depend on $n$.
    $endgroup$
    – RRL
    Jan 25 at 22:11
















1












$begingroup$


If the radius of convergence of $sum^{infty}_{n=1}a_n x^n$ is $R$, what is the radius of convergence of $sum^{infty}_{n=1}a_n x^{n!}$.



My trial



begin{align} limsuplimits_{nto infty} sqrt[n]{|a_n x^{n!}|}&=limsuplimits_{nto infty} sqrt[n]{|a_n |}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}\&=dfrac{1}{R}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}< 1end{align}
This implies that



begin{align} limlimits_{nto infty} sqrt[n]{|x|^{n!}}< R&implies ;{|x|^{(n-1)!}}< R,;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}< R^{1/(n-1)!},;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}leq 1,;;text{as};nto infty.end{align}
I'm I correct? If yes, can I say that the radius of convergence $1?$. If no, can anyone help out or provide a hint?










share|cite|improve this question











$endgroup$












  • $begingroup$
    If your ultimate conclusion is $1$, then you are correct, but the approach is shaky. Radius of convergence is a constant that does not depend on $n$.
    $endgroup$
    – RRL
    Jan 25 at 22:11














1












1








1


3



$begingroup$


If the radius of convergence of $sum^{infty}_{n=1}a_n x^n$ is $R$, what is the radius of convergence of $sum^{infty}_{n=1}a_n x^{n!}$.



My trial



begin{align} limsuplimits_{nto infty} sqrt[n]{|a_n x^{n!}|}&=limsuplimits_{nto infty} sqrt[n]{|a_n |}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}\&=dfrac{1}{R}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}< 1end{align}
This implies that



begin{align} limlimits_{nto infty} sqrt[n]{|x|^{n!}}< R&implies ;{|x|^{(n-1)!}}< R,;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}< R^{1/(n-1)!},;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}leq 1,;;text{as};nto infty.end{align}
I'm I correct? If yes, can I say that the radius of convergence $1?$. If no, can anyone help out or provide a hint?










share|cite|improve this question











$endgroup$




If the radius of convergence of $sum^{infty}_{n=1}a_n x^n$ is $R$, what is the radius of convergence of $sum^{infty}_{n=1}a_n x^{n!}$.



My trial



begin{align} limsuplimits_{nto infty} sqrt[n]{|a_n x^{n!}|}&=limsuplimits_{nto infty} sqrt[n]{|a_n |}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}\&=dfrac{1}{R}cdot limlimits_{nto infty} sqrt[n]{|x|^{n!}}< 1end{align}
This implies that



begin{align} limlimits_{nto infty} sqrt[n]{|x|^{n!}}< R&implies ;{|x|^{(n-1)!}}< R,;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}< R^{1/(n-1)!},;;forall;ngeq N,;;text{for some};N,\&implies ;{|x|}leq 1,;;text{as};nto infty.end{align}
I'm I correct? If yes, can I say that the radius of convergence $1?$. If no, can anyone help out or provide a hint?







real-analysis sequences-and-series analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 0:09







Omojola Micheal

















asked Jan 25 at 18:54









Omojola MichealOmojola Micheal

1,986324




1,986324












  • $begingroup$
    If your ultimate conclusion is $1$, then you are correct, but the approach is shaky. Radius of convergence is a constant that does not depend on $n$.
    $endgroup$
    – RRL
    Jan 25 at 22:11


















  • $begingroup$
    If your ultimate conclusion is $1$, then you are correct, but the approach is shaky. Radius of convergence is a constant that does not depend on $n$.
    $endgroup$
    – RRL
    Jan 25 at 22:11
















$begingroup$
If your ultimate conclusion is $1$, then you are correct, but the approach is shaky. Radius of convergence is a constant that does not depend on $n$.
$endgroup$
– RRL
Jan 25 at 22:11




$begingroup$
If your ultimate conclusion is $1$, then you are correct, but the approach is shaky. Radius of convergence is a constant that does not depend on $n$.
$endgroup$
– RRL
Jan 25 at 22:11










1 Answer
1






active

oldest

votes


















6












$begingroup$

Note that $displaystylesum_{n=1}^infty a_n x^{n!} = sum_{k=1}^infty b_k x^k$ where $displaystyle b_k = begin{cases} a_n, & k = n!\ 0, & k neq n! end{cases}$



Now you need to consider



$$limsup_{k to infty}, |b_kx^k|^{1/k} = limsup_{n to infty} |a_n|^{1/n!} |x| < 1,$$



which implies that the radius of convergence is $left(limsup_{n to infty} |a_n|^{1/n!}right)^{-1}$.



If $|a_n|^{1/n} to R^{-1}$ then to what does $|a_n|^{1/n!} = (|a_n|^{1/n})^{1/(n-1)!}$ converge ?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes, that true! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 26 at 0:07












  • $begingroup$
    @RRL: So, what happens when $R=0,infty$?
    $endgroup$
    – Micheal
    Jan 30 at 7:39













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087486%2fif-the-radius-of-convergence-of-sum-infty-n-1a-n-xn-is-r-what-is-the%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Note that $displaystylesum_{n=1}^infty a_n x^{n!} = sum_{k=1}^infty b_k x^k$ where $displaystyle b_k = begin{cases} a_n, & k = n!\ 0, & k neq n! end{cases}$



Now you need to consider



$$limsup_{k to infty}, |b_kx^k|^{1/k} = limsup_{n to infty} |a_n|^{1/n!} |x| < 1,$$



which implies that the radius of convergence is $left(limsup_{n to infty} |a_n|^{1/n!}right)^{-1}$.



If $|a_n|^{1/n} to R^{-1}$ then to what does $|a_n|^{1/n!} = (|a_n|^{1/n})^{1/(n-1)!}$ converge ?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes, that true! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 26 at 0:07












  • $begingroup$
    @RRL: So, what happens when $R=0,infty$?
    $endgroup$
    – Micheal
    Jan 30 at 7:39


















6












$begingroup$

Note that $displaystylesum_{n=1}^infty a_n x^{n!} = sum_{k=1}^infty b_k x^k$ where $displaystyle b_k = begin{cases} a_n, & k = n!\ 0, & k neq n! end{cases}$



Now you need to consider



$$limsup_{k to infty}, |b_kx^k|^{1/k} = limsup_{n to infty} |a_n|^{1/n!} |x| < 1,$$



which implies that the radius of convergence is $left(limsup_{n to infty} |a_n|^{1/n!}right)^{-1}$.



If $|a_n|^{1/n} to R^{-1}$ then to what does $|a_n|^{1/n!} = (|a_n|^{1/n})^{1/(n-1)!}$ converge ?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes, that true! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 26 at 0:07












  • $begingroup$
    @RRL: So, what happens when $R=0,infty$?
    $endgroup$
    – Micheal
    Jan 30 at 7:39
















6












6








6





$begingroup$

Note that $displaystylesum_{n=1}^infty a_n x^{n!} = sum_{k=1}^infty b_k x^k$ where $displaystyle b_k = begin{cases} a_n, & k = n!\ 0, & k neq n! end{cases}$



Now you need to consider



$$limsup_{k to infty}, |b_kx^k|^{1/k} = limsup_{n to infty} |a_n|^{1/n!} |x| < 1,$$



which implies that the radius of convergence is $left(limsup_{n to infty} |a_n|^{1/n!}right)^{-1}$.



If $|a_n|^{1/n} to R^{-1}$ then to what does $|a_n|^{1/n!} = (|a_n|^{1/n})^{1/(n-1)!}$ converge ?






share|cite|improve this answer











$endgroup$



Note that $displaystylesum_{n=1}^infty a_n x^{n!} = sum_{k=1}^infty b_k x^k$ where $displaystyle b_k = begin{cases} a_n, & k = n!\ 0, & k neq n! end{cases}$



Now you need to consider



$$limsup_{k to infty}, |b_kx^k|^{1/k} = limsup_{n to infty} |a_n|^{1/n!} |x| < 1,$$



which implies that the radius of convergence is $left(limsup_{n to infty} |a_n|^{1/n!}right)^{-1}$.



If $|a_n|^{1/n} to R^{-1}$ then to what does $|a_n|^{1/n!} = (|a_n|^{1/n})^{1/(n-1)!}$ converge ?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 25 at 22:08

























answered Jan 25 at 19:23









RRLRRL

52.8k42573




52.8k42573












  • $begingroup$
    Yes, that true! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 26 at 0:07












  • $begingroup$
    @RRL: So, what happens when $R=0,infty$?
    $endgroup$
    – Micheal
    Jan 30 at 7:39




















  • $begingroup$
    Yes, that true! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 26 at 0:07












  • $begingroup$
    @RRL: So, what happens when $R=0,infty$?
    $endgroup$
    – Micheal
    Jan 30 at 7:39


















$begingroup$
Yes, that true! (+1)
$endgroup$
– Omojola Micheal
Jan 26 at 0:07






$begingroup$
Yes, that true! (+1)
$endgroup$
– Omojola Micheal
Jan 26 at 0:07














$begingroup$
@RRL: So, what happens when $R=0,infty$?
$endgroup$
– Micheal
Jan 30 at 7:39






$begingroup$
@RRL: So, what happens when $R=0,infty$?
$endgroup$
– Micheal
Jan 30 at 7:39




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087486%2fif-the-radius-of-convergence-of-sum-infty-n-1a-n-xn-is-r-what-is-the%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith