Limit of martingale is not $Sigma_n$-measurable
$begingroup$
Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$
Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?
To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?
If we have $L_1$ convergence then
$$mathbb{E}[X mid Sigma_n]=X_n.$$
Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.
If ${X=1}inSigma_n$, then we would have
$$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
Am I approaching this in the right way? How do I continue?
probability-theory measure-theory conditional-expectation martingales
$endgroup$
add a comment |
$begingroup$
Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$
Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?
To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?
If we have $L_1$ convergence then
$$mathbb{E}[X mid Sigma_n]=X_n.$$
Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.
If ${X=1}inSigma_n$, then we would have
$$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
Am I approaching this in the right way? How do I continue?
probability-theory measure-theory conditional-expectation martingales
$endgroup$
add a comment |
$begingroup$
Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$
Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?
To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?
If we have $L_1$ convergence then
$$mathbb{E}[X mid Sigma_n]=X_n.$$
Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.
If ${X=1}inSigma_n$, then we would have
$$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
Am I approaching this in the right way? How do I continue?
probability-theory measure-theory conditional-expectation martingales
$endgroup$
Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$
Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?
To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?
If we have $L_1$ convergence then
$$mathbb{E}[X mid Sigma_n]=X_n.$$
Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.
If ${X=1}inSigma_n$, then we would have
$$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
Am I approaching this in the right way? How do I continue?
probability-theory measure-theory conditional-expectation martingales
probability-theory measure-theory conditional-expectation martingales
edited Jan 28 at 10:02
saz
81.9k862131
81.9k862131
asked Jan 27 at 19:26
Joachim DoyleJoachim Doyle
818
818
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using
$$X = 1_{{X=1}} - 1_{{X=-1}}$$
it follows that
$$mathbb{E}(X mid Sigma_n) = X.$$
On the other hand, the martingale property also gives
$$mathbb{E}(X mid Sigma_n) =X_n,$$
and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies
$$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$
for any fixed $u in [-1,1]$, we have
$$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090011%2flimit-of-martingale-is-not-sigma-n-measurable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using
$$X = 1_{{X=1}} - 1_{{X=-1}}$$
it follows that
$$mathbb{E}(X mid Sigma_n) = X.$$
On the other hand, the martingale property also gives
$$mathbb{E}(X mid Sigma_n) =X_n,$$
and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies
$$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$
for any fixed $u in [-1,1]$, we have
$$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.
$endgroup$
add a comment |
$begingroup$
Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using
$$X = 1_{{X=1}} - 1_{{X=-1}}$$
it follows that
$$mathbb{E}(X mid Sigma_n) = X.$$
On the other hand, the martingale property also gives
$$mathbb{E}(X mid Sigma_n) =X_n,$$
and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies
$$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$
for any fixed $u in [-1,1]$, we have
$$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.
$endgroup$
add a comment |
$begingroup$
Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using
$$X = 1_{{X=1}} - 1_{{X=-1}}$$
it follows that
$$mathbb{E}(X mid Sigma_n) = X.$$
On the other hand, the martingale property also gives
$$mathbb{E}(X mid Sigma_n) =X_n,$$
and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies
$$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$
for any fixed $u in [-1,1]$, we have
$$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.
$endgroup$
Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using
$$X = 1_{{X=1}} - 1_{{X=-1}}$$
it follows that
$$mathbb{E}(X mid Sigma_n) = X.$$
On the other hand, the martingale property also gives
$$mathbb{E}(X mid Sigma_n) =X_n,$$
and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies
$$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$
for any fixed $u in [-1,1]$, we have
$$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.
answered Jan 27 at 19:51
sazsaz
81.9k862131
81.9k862131
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090011%2flimit-of-martingale-is-not-sigma-n-measurable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown