Limit of martingale is not $Sigma_n$-measurable












1












$begingroup$


Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$




Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?




To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?



If we have $L_1$ convergence then
$$mathbb{E}[X mid Sigma_n]=X_n.$$
Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.

If ${X=1}inSigma_n$, then we would have
$$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
Am I approaching this in the right way? How do I continue?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$




    Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?




    To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?



    If we have $L_1$ convergence then
    $$mathbb{E}[X mid Sigma_n]=X_n.$$
    Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.

    If ${X=1}inSigma_n$, then we would have
    $$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
    Am I approaching this in the right way? How do I continue?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$




      Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?




      To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?



      If we have $L_1$ convergence then
      $$mathbb{E}[X mid Sigma_n]=X_n.$$
      Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.

      If ${X=1}inSigma_n$, then we would have
      $$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
      Am I approaching this in the right way? How do I continue?










      share|cite|improve this question











      $endgroup$




      Let $U_nsim$ Unif$(-1,1)$ and $Sigma_n=sigma(U_1,...,U_n)$. Define $X_0=0$ and $$X_n=X_{n-1}+(1-|X_{n-1}|)U_n.$$




      Given that for the limit $X$ of $X_n$ we have $mathbb{P}(X=-1)=mathbb{P}(X=1)=frac{1}{2}$, how do we show that ${X=1}notinSigma_n$?




      To show that we have a.s. and $L_1$ convergence of $X_n$ to $X$ we can show uniform integrability. To do this I thought we can show that $|X_n|leq 1$ for all $n$ a.s. How do I do this?



      If we have $L_1$ convergence then
      $$mathbb{E}[X mid Sigma_n]=X_n.$$
      Further we have $int_{{X=1}}X , dmathbb{P}=mathbb{P}(X=1)=frac{1}{2}$.

      If ${X=1}inSigma_n$, then we would have
      $$int_{{X=1}}X , dmathbb{P}=int_{{X=1}}mathbb{E}[X mid Sigma_n] , dmathbb{P}=int_{{X=1}}X_n , dmathbb{P}.$$
      Am I approaching this in the right way? How do I continue?







      probability-theory measure-theory conditional-expectation martingales






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 28 at 10:02









      saz

      81.9k862131




      81.9k862131










      asked Jan 27 at 19:26









      Joachim DoyleJoachim Doyle

      818




      818






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using



          $$X = 1_{{X=1}} - 1_{{X=-1}}$$



          it follows that



          $$mathbb{E}(X mid Sigma_n) = X.$$



          On the other hand, the martingale property also gives



          $$mathbb{E}(X mid Sigma_n) =X_n,$$



          and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies



          $$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$



          for any fixed $u in [-1,1]$, we have



          $$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090011%2flimit-of-martingale-is-not-sigma-n-measurable%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using



            $$X = 1_{{X=1}} - 1_{{X=-1}}$$



            it follows that



            $$mathbb{E}(X mid Sigma_n) = X.$$



            On the other hand, the martingale property also gives



            $$mathbb{E}(X mid Sigma_n) =X_n,$$



            and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies



            $$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$



            for any fixed $u in [-1,1]$, we have



            $$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using



              $$X = 1_{{X=1}} - 1_{{X=-1}}$$



              it follows that



              $$mathbb{E}(X mid Sigma_n) = X.$$



              On the other hand, the martingale property also gives



              $$mathbb{E}(X mid Sigma_n) =X_n,$$



              and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies



              $$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$



              for any fixed $u in [-1,1]$, we have



              $$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using



                $$X = 1_{{X=1}} - 1_{{X=-1}}$$



                it follows that



                $$mathbb{E}(X mid Sigma_n) = X.$$



                On the other hand, the martingale property also gives



                $$mathbb{E}(X mid Sigma_n) =X_n,$$



                and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies



                $$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$



                for any fixed $u in [-1,1]$, we have



                $$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.






                share|cite|improve this answer









                $endgroup$



                Suppose that ${X=1} in Sigma_n$ for some $n in mathbb{N}$. Since $Sigma_n$ is a $sigma$-algebra this would imply $${X=-1} = {X=1}^c in Sigma_n.$$ Using



                $$X = 1_{{X=1}} - 1_{{X=-1}}$$



                it follows that



                $$mathbb{E}(X mid Sigma_n) = X.$$



                On the other hand, the martingale property also gives



                $$mathbb{E}(X mid Sigma_n) =X_n,$$



                and so $X_n = X$ almost surely. In particular, $$mathbb{P}(X_n=1) = mathbb{P}(X_n = -1) = frac{1}{2}. tag{1}$$ Since the mapping $x mapsto f(x) := x+(1-|x|)u$ satisfies



                $$f(x)=1 iff x=1 quad text{and} quad f(x)=-1 iff x=-1$$



                for any fixed $u in [-1,1]$, we have



                $$X_n(omega) = 1 iff X_{n-1}(omega)=1 quad text{and} quad X_{n}(omega)=1 iff X_{n-1}(omega)=-1$$ Combining this with $(1)$ we get $$mathbb{P}(X_{n-1}=1) =mathbb{P}(X_{n-1} = -1) = frac{1}{2}.$$ Iterating the procedure we find that $$mathbb{P}(X_0=1) = mathbb{P}(X_0=-1) = frac{1}{2}$$ in contradiction to the assumption that $X_0 =0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 27 at 19:51









                sazsaz

                81.9k862131




                81.9k862131






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090011%2flimit-of-martingale-is-not-sigma-n-measurable%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith