Rational solutions of $2(1+x^2)+4x(y-y^3)^2=z^2$
$begingroup$
Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.
This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.
Edit: I am expecting some parametric family of solutions.
number-theory diophantine-equations
$endgroup$
add a comment |
$begingroup$
Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.
This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.
Edit: I am expecting some parametric family of solutions.
number-theory diophantine-equations
$endgroup$
2
$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20
$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23
$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23
$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25
add a comment |
$begingroup$
Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.
This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.
Edit: I am expecting some parametric family of solutions.
number-theory diophantine-equations
$endgroup$
Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.
This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.
Edit: I am expecting some parametric family of solutions.
number-theory diophantine-equations
number-theory diophantine-equations
edited Jan 28 at 0:24
ersh
asked Jan 28 at 0:11


ershersh
438113
438113
2
$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20
$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23
$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23
$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25
add a comment |
2
$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20
$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23
$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23
$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25
2
2
$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20
$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20
$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23
$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23
$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23
$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23
$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25
$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Taking $y=5$ gives
$$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
$$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$
jagy@phobeusjunior:~$ date
Sun Jan 27 18:51:05 PST 2019
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 1713719 = 7 17 14401
Sun Jan 27 18:51:08 PST 2019
w: 1339 v: 199 SEED KEEP +-
w: 1381 v: 311 SEED KEEP +-
w: 1637 v: 695 SEED KEEP +-
w: 1763 v: 835 SEED KEEP +-
w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
w: 4813 v: 3275
w: 5387 v: 3695
w: 7691 v: 5359
w: 8629 v: 6031
w: 9931 v: 6961
w: 11149 v: 7829
w: 16013 v: 11285
w: 17987 v: 12685
w: 27539 v: 19451
w: 30941 v: 21859
w: 44509 v: 31459
w: 50011 v: 35351
w: 57637 v: 40745
w: 64763 v: 45785
w: 93179 v: 65881
w: 104701 v: 74029
w: 160421 v: 113431
w: 180259 v: 127459
w: 259363 v: 183395
w: 291437 v: 206075
w: 335891 v: 237509
w: 377429 v: 266881
w: 543061 v: 384001
w: 610219 v: 431489
w: 934987 v: 661135
w: 1050613 v: 742895
w: 1511669 v: 1068911
w: 1698611 v: 1201099
w: 1957709 v: 1384309
w: 2199811 v: 1555501
w: 3165187 v: 2238125
w: 3556613 v: 2514905
w: 5449501 v: 3853379
w: 6123419 v: 4329911
w: 8810651 v: 6230071
w: 9900229 v: 7000519
w: 11410363 v: 8068345
w: 12821437 v: 9066125
Sun Jan 27 18:51:33 PST 2019
w^2 - 2 v^2 = 1713719 = 7 17 14401
jagy@phobeusjunior:~$
$endgroup$
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
1
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
add a comment |
$begingroup$
The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
$$ x_{n+2} = 6 x_{n+1} - x_n. $$
I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.
Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
cannopt be expressed as $w^2 - 2 v^2$ in integers.
jagy@phobeusjunior:~$ ./mse
x: -1 y: -1 z: 2 = 2
x: -1 y: 0 z: 2 = 2
x: -1 y: 1 z: 2 = 2
x: 1 y: -1 z: 2 = 2
x: 1 y: 0 z: 2 = 2
x: 1 y: 1 z: 2 = 2
x: -7 y: -1 z: 10 = 2 5
x: -7 y: 0 z: 10 = 2 5
x: -7 y: 1 z: 10 = 2 5
x: 7 y: -1 z: 10 = 2 5
x: 7 y: 0 z: 10 = 2 5
x: 7 y: 1 z: 10 = 2 5
x: -41 y: -1 z: 58 = 2 29
x: -41 y: 0 z: 58 = 2 29
x: -41 y: 1 z: 58 = 2 29
x: 41 y: -1 z: 58 = 2 29
x: 41 y: 0 z: 58 = 2 29
x: 41 y: 1 z: 58 = 2 29
x: 89 y: 3 z: 470 = 2 5 47
x: 119 y: 3 z: 550 = 2 5^2 11
x: -239 y: -1 z: 338 = 2 13^2
x: -239 y: 0 z: 338 = 2 13^2
x: -239 y: 1 z: 338 = 2 13^2
x: 239 y: -1 z: 338 = 2 13^2
x: 239 y: 0 z: 338 = 2 13^2
x: 239 y: 1 z: 338 = 2 13^2
x: 329 y: 5 z: 4378 = 2 11 199
x: 409 y: 3 z: 1130 = 2 5 113
x: 479 y: 3 z: 1250 = 2 5^4
x: 791 y: 5 z: 6842 = 2 11 311
x: -1241 y: 3 z: 470 = 2 5 47
x: -1271 y: 3 z: 550 = 2 5^2 11
x: -1393 y: -1 z: 1970 = 2 5 197
x: -1393 y: 0 z: 1970 = 2 5 197
x: -1393 y: 1 z: 1970 = 2 5 197
x: 1393 y: -1 z: 1970 = 2 5 197
x: 1393 y: 0 z: 1970 = 2 5 197
x: 1393 y: 1 z: 1970 = 2 5 197
x: -1561 y: 3 z: 1130 = 2 5 113
x: -1631 y: 3 z: 1250 = 2 5^4
x: 2359 y: 3 z: 4070 = 2 5 11 37
x: 2609 y: 3 z: 4430 = 2 5 443
x: -3511 y: 3 z: 4070 = 2 5 11 37
x: 3607 y: 5 z: 15290 = 2 5 11 139
x: -3761 y: 3 z: 4430 = 2 5 443
x: 4639 y: 3 z: 7330 = 2 5 733
x: 4993 y: 5 z: 18370 = 2 5 11 167
x: 5089 y: 3 z: 7970 = 2 5 797
x: -5791 y: 3 z: 7330 = 2 5 733
x: -6241 y: 3 z: 7970 = 2 5 797
x: 7039 y: 5 z: 22462 = 2 11 1021
x: -8119 y: -1 z: 11482 = 2 5741
x: -8119 y: 0 z: 11482 = 2 5741
x: -8119 y: 1 z: 11482 = 2 5741
x: 8119 y: -1 z: 11482 = 2 5741
x: 8119 y: 0 z: 11482 = 2 5741
x: 8119 y: 1 z: 11482 = 2 5741
x: 9041 y: 5 z: 26158 = 2 11 29 41
x: 16369 y: 3 z: 23950 = 2 5^2 479
x: 17489 y: 5 z: 40238 = 2 11 31 59
x: -17521 y: 3 z: 23950 = 2 5^2 479
x: 17839 y: 3 z: 26030 = 2 5 19 137
x: -18991 y: 3 z: 26030 = 2 5 19 137
$endgroup$
add a comment |
$begingroup$
Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
$$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
$$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 13271 = 23 577
Sun Jan 27 18:25:45 PST 2019
w: 133 v: 47 SEED KEEP +-
w: 139 v: 55 SEED KEEP +-
w: 197 v: 113 SEED BACK ONE STEP 139 , -55
w: 211 v: 125 SEED BACK ONE STEP 133 , -47
w: 587 v: 407
w: 637 v: 443
w: 1043 v: 733
w: 1133 v: 797
w: 3389 v: 2395
w: 3683 v: 2603
w: 6061 v: 4285
w: 6587 v: 4657
w: 19747 v: 13963
w: 21461 v: 15175
w: 35323 v: 24977
w: 38389 v: 27145
w: 115093 v: 81383
w: 125083 v: 88447
w: 205877 v: 145577
w: 223747 v: 158213
w: 670811 v: 474335
w: 729037 v: 515507
w: 1199939 v: 848485
w: 1304093 v: 922133
w: 3909773 v: 2764627
w: 4249139 v: 3004595
w: 6993757 v: 4945333
w: 7600811 v: 5374585
Sun Jan 27 18:26:11 PST 2019
w^2 - 2 v^2 = 13271 = 23 577
jagy@phobeusjunior:~$
$endgroup$
add a comment |
$begingroup$
jagy@phobeusjunior:~$ ./mse
x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
x: 15226951 y: 40 z: 499630198 = 2 607 411557
x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
x: 35790119 y: 40 z: 766951382 = 2 383475691
x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090286%2frational-solutions-of-21x24xy-y32-z2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Taking $y=5$ gives
$$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
$$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$
jagy@phobeusjunior:~$ date
Sun Jan 27 18:51:05 PST 2019
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 1713719 = 7 17 14401
Sun Jan 27 18:51:08 PST 2019
w: 1339 v: 199 SEED KEEP +-
w: 1381 v: 311 SEED KEEP +-
w: 1637 v: 695 SEED KEEP +-
w: 1763 v: 835 SEED KEEP +-
w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
w: 4813 v: 3275
w: 5387 v: 3695
w: 7691 v: 5359
w: 8629 v: 6031
w: 9931 v: 6961
w: 11149 v: 7829
w: 16013 v: 11285
w: 17987 v: 12685
w: 27539 v: 19451
w: 30941 v: 21859
w: 44509 v: 31459
w: 50011 v: 35351
w: 57637 v: 40745
w: 64763 v: 45785
w: 93179 v: 65881
w: 104701 v: 74029
w: 160421 v: 113431
w: 180259 v: 127459
w: 259363 v: 183395
w: 291437 v: 206075
w: 335891 v: 237509
w: 377429 v: 266881
w: 543061 v: 384001
w: 610219 v: 431489
w: 934987 v: 661135
w: 1050613 v: 742895
w: 1511669 v: 1068911
w: 1698611 v: 1201099
w: 1957709 v: 1384309
w: 2199811 v: 1555501
w: 3165187 v: 2238125
w: 3556613 v: 2514905
w: 5449501 v: 3853379
w: 6123419 v: 4329911
w: 8810651 v: 6230071
w: 9900229 v: 7000519
w: 11410363 v: 8068345
w: 12821437 v: 9066125
Sun Jan 27 18:51:33 PST 2019
w^2 - 2 v^2 = 1713719 = 7 17 14401
jagy@phobeusjunior:~$
$endgroup$
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
1
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
add a comment |
$begingroup$
Taking $y=5$ gives
$$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
$$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$
jagy@phobeusjunior:~$ date
Sun Jan 27 18:51:05 PST 2019
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 1713719 = 7 17 14401
Sun Jan 27 18:51:08 PST 2019
w: 1339 v: 199 SEED KEEP +-
w: 1381 v: 311 SEED KEEP +-
w: 1637 v: 695 SEED KEEP +-
w: 1763 v: 835 SEED KEEP +-
w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
w: 4813 v: 3275
w: 5387 v: 3695
w: 7691 v: 5359
w: 8629 v: 6031
w: 9931 v: 6961
w: 11149 v: 7829
w: 16013 v: 11285
w: 17987 v: 12685
w: 27539 v: 19451
w: 30941 v: 21859
w: 44509 v: 31459
w: 50011 v: 35351
w: 57637 v: 40745
w: 64763 v: 45785
w: 93179 v: 65881
w: 104701 v: 74029
w: 160421 v: 113431
w: 180259 v: 127459
w: 259363 v: 183395
w: 291437 v: 206075
w: 335891 v: 237509
w: 377429 v: 266881
w: 543061 v: 384001
w: 610219 v: 431489
w: 934987 v: 661135
w: 1050613 v: 742895
w: 1511669 v: 1068911
w: 1698611 v: 1201099
w: 1957709 v: 1384309
w: 2199811 v: 1555501
w: 3165187 v: 2238125
w: 3556613 v: 2514905
w: 5449501 v: 3853379
w: 6123419 v: 4329911
w: 8810651 v: 6230071
w: 9900229 v: 7000519
w: 11410363 v: 8068345
w: 12821437 v: 9066125
Sun Jan 27 18:51:33 PST 2019
w^2 - 2 v^2 = 1713719 = 7 17 14401
jagy@phobeusjunior:~$
$endgroup$
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
1
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
add a comment |
$begingroup$
Taking $y=5$ gives
$$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
$$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$
jagy@phobeusjunior:~$ date
Sun Jan 27 18:51:05 PST 2019
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 1713719 = 7 17 14401
Sun Jan 27 18:51:08 PST 2019
w: 1339 v: 199 SEED KEEP +-
w: 1381 v: 311 SEED KEEP +-
w: 1637 v: 695 SEED KEEP +-
w: 1763 v: 835 SEED KEEP +-
w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
w: 4813 v: 3275
w: 5387 v: 3695
w: 7691 v: 5359
w: 8629 v: 6031
w: 9931 v: 6961
w: 11149 v: 7829
w: 16013 v: 11285
w: 17987 v: 12685
w: 27539 v: 19451
w: 30941 v: 21859
w: 44509 v: 31459
w: 50011 v: 35351
w: 57637 v: 40745
w: 64763 v: 45785
w: 93179 v: 65881
w: 104701 v: 74029
w: 160421 v: 113431
w: 180259 v: 127459
w: 259363 v: 183395
w: 291437 v: 206075
w: 335891 v: 237509
w: 377429 v: 266881
w: 543061 v: 384001
w: 610219 v: 431489
w: 934987 v: 661135
w: 1050613 v: 742895
w: 1511669 v: 1068911
w: 1698611 v: 1201099
w: 1957709 v: 1384309
w: 2199811 v: 1555501
w: 3165187 v: 2238125
w: 3556613 v: 2514905
w: 5449501 v: 3853379
w: 6123419 v: 4329911
w: 8810651 v: 6230071
w: 9900229 v: 7000519
w: 11410363 v: 8068345
w: 12821437 v: 9066125
Sun Jan 27 18:51:33 PST 2019
w^2 - 2 v^2 = 1713719 = 7 17 14401
jagy@phobeusjunior:~$
$endgroup$
Taking $y=5$ gives
$$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
$$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$
jagy@phobeusjunior:~$ date
Sun Jan 27 18:51:05 PST 2019
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 1713719 = 7 17 14401
Sun Jan 27 18:51:08 PST 2019
w: 1339 v: 199 SEED KEEP +-
w: 1381 v: 311 SEED KEEP +-
w: 1637 v: 695 SEED KEEP +-
w: 1763 v: 835 SEED KEEP +-
w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
w: 4813 v: 3275
w: 5387 v: 3695
w: 7691 v: 5359
w: 8629 v: 6031
w: 9931 v: 6961
w: 11149 v: 7829
w: 16013 v: 11285
w: 17987 v: 12685
w: 27539 v: 19451
w: 30941 v: 21859
w: 44509 v: 31459
w: 50011 v: 35351
w: 57637 v: 40745
w: 64763 v: 45785
w: 93179 v: 65881
w: 104701 v: 74029
w: 160421 v: 113431
w: 180259 v: 127459
w: 259363 v: 183395
w: 291437 v: 206075
w: 335891 v: 237509
w: 377429 v: 266881
w: 543061 v: 384001
w: 610219 v: 431489
w: 934987 v: 661135
w: 1050613 v: 742895
w: 1511669 v: 1068911
w: 1698611 v: 1201099
w: 1957709 v: 1384309
w: 2199811 v: 1555501
w: 3165187 v: 2238125
w: 3556613 v: 2514905
w: 5449501 v: 3853379
w: 6123419 v: 4329911
w: 8810651 v: 6230071
w: 9900229 v: 7000519
w: 11410363 v: 8068345
w: 12821437 v: 9066125
Sun Jan 27 18:51:33 PST 2019
w^2 - 2 v^2 = 1713719 = 7 17 14401
jagy@phobeusjunior:~$
answered Jan 28 at 2:53
Will JagyWill Jagy
104k5102201
104k5102201
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
1
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
add a comment |
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
1
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
$begingroup$
I will work with what you have provided. I will be back.
$endgroup$
– ersh
Jan 28 at 2:58
1
1
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
$begingroup$
@ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
$endgroup$
– Will Jagy
Jan 28 at 3:21
add a comment |
$begingroup$
The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
$$ x_{n+2} = 6 x_{n+1} - x_n. $$
I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.
Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
cannopt be expressed as $w^2 - 2 v^2$ in integers.
jagy@phobeusjunior:~$ ./mse
x: -1 y: -1 z: 2 = 2
x: -1 y: 0 z: 2 = 2
x: -1 y: 1 z: 2 = 2
x: 1 y: -1 z: 2 = 2
x: 1 y: 0 z: 2 = 2
x: 1 y: 1 z: 2 = 2
x: -7 y: -1 z: 10 = 2 5
x: -7 y: 0 z: 10 = 2 5
x: -7 y: 1 z: 10 = 2 5
x: 7 y: -1 z: 10 = 2 5
x: 7 y: 0 z: 10 = 2 5
x: 7 y: 1 z: 10 = 2 5
x: -41 y: -1 z: 58 = 2 29
x: -41 y: 0 z: 58 = 2 29
x: -41 y: 1 z: 58 = 2 29
x: 41 y: -1 z: 58 = 2 29
x: 41 y: 0 z: 58 = 2 29
x: 41 y: 1 z: 58 = 2 29
x: 89 y: 3 z: 470 = 2 5 47
x: 119 y: 3 z: 550 = 2 5^2 11
x: -239 y: -1 z: 338 = 2 13^2
x: -239 y: 0 z: 338 = 2 13^2
x: -239 y: 1 z: 338 = 2 13^2
x: 239 y: -1 z: 338 = 2 13^2
x: 239 y: 0 z: 338 = 2 13^2
x: 239 y: 1 z: 338 = 2 13^2
x: 329 y: 5 z: 4378 = 2 11 199
x: 409 y: 3 z: 1130 = 2 5 113
x: 479 y: 3 z: 1250 = 2 5^4
x: 791 y: 5 z: 6842 = 2 11 311
x: -1241 y: 3 z: 470 = 2 5 47
x: -1271 y: 3 z: 550 = 2 5^2 11
x: -1393 y: -1 z: 1970 = 2 5 197
x: -1393 y: 0 z: 1970 = 2 5 197
x: -1393 y: 1 z: 1970 = 2 5 197
x: 1393 y: -1 z: 1970 = 2 5 197
x: 1393 y: 0 z: 1970 = 2 5 197
x: 1393 y: 1 z: 1970 = 2 5 197
x: -1561 y: 3 z: 1130 = 2 5 113
x: -1631 y: 3 z: 1250 = 2 5^4
x: 2359 y: 3 z: 4070 = 2 5 11 37
x: 2609 y: 3 z: 4430 = 2 5 443
x: -3511 y: 3 z: 4070 = 2 5 11 37
x: 3607 y: 5 z: 15290 = 2 5 11 139
x: -3761 y: 3 z: 4430 = 2 5 443
x: 4639 y: 3 z: 7330 = 2 5 733
x: 4993 y: 5 z: 18370 = 2 5 11 167
x: 5089 y: 3 z: 7970 = 2 5 797
x: -5791 y: 3 z: 7330 = 2 5 733
x: -6241 y: 3 z: 7970 = 2 5 797
x: 7039 y: 5 z: 22462 = 2 11 1021
x: -8119 y: -1 z: 11482 = 2 5741
x: -8119 y: 0 z: 11482 = 2 5741
x: -8119 y: 1 z: 11482 = 2 5741
x: 8119 y: -1 z: 11482 = 2 5741
x: 8119 y: 0 z: 11482 = 2 5741
x: 8119 y: 1 z: 11482 = 2 5741
x: 9041 y: 5 z: 26158 = 2 11 29 41
x: 16369 y: 3 z: 23950 = 2 5^2 479
x: 17489 y: 5 z: 40238 = 2 11 31 59
x: -17521 y: 3 z: 23950 = 2 5^2 479
x: 17839 y: 3 z: 26030 = 2 5 19 137
x: -18991 y: 3 z: 26030 = 2 5 19 137
$endgroup$
add a comment |
$begingroup$
The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
$$ x_{n+2} = 6 x_{n+1} - x_n. $$
I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.
Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
cannopt be expressed as $w^2 - 2 v^2$ in integers.
jagy@phobeusjunior:~$ ./mse
x: -1 y: -1 z: 2 = 2
x: -1 y: 0 z: 2 = 2
x: -1 y: 1 z: 2 = 2
x: 1 y: -1 z: 2 = 2
x: 1 y: 0 z: 2 = 2
x: 1 y: 1 z: 2 = 2
x: -7 y: -1 z: 10 = 2 5
x: -7 y: 0 z: 10 = 2 5
x: -7 y: 1 z: 10 = 2 5
x: 7 y: -1 z: 10 = 2 5
x: 7 y: 0 z: 10 = 2 5
x: 7 y: 1 z: 10 = 2 5
x: -41 y: -1 z: 58 = 2 29
x: -41 y: 0 z: 58 = 2 29
x: -41 y: 1 z: 58 = 2 29
x: 41 y: -1 z: 58 = 2 29
x: 41 y: 0 z: 58 = 2 29
x: 41 y: 1 z: 58 = 2 29
x: 89 y: 3 z: 470 = 2 5 47
x: 119 y: 3 z: 550 = 2 5^2 11
x: -239 y: -1 z: 338 = 2 13^2
x: -239 y: 0 z: 338 = 2 13^2
x: -239 y: 1 z: 338 = 2 13^2
x: 239 y: -1 z: 338 = 2 13^2
x: 239 y: 0 z: 338 = 2 13^2
x: 239 y: 1 z: 338 = 2 13^2
x: 329 y: 5 z: 4378 = 2 11 199
x: 409 y: 3 z: 1130 = 2 5 113
x: 479 y: 3 z: 1250 = 2 5^4
x: 791 y: 5 z: 6842 = 2 11 311
x: -1241 y: 3 z: 470 = 2 5 47
x: -1271 y: 3 z: 550 = 2 5^2 11
x: -1393 y: -1 z: 1970 = 2 5 197
x: -1393 y: 0 z: 1970 = 2 5 197
x: -1393 y: 1 z: 1970 = 2 5 197
x: 1393 y: -1 z: 1970 = 2 5 197
x: 1393 y: 0 z: 1970 = 2 5 197
x: 1393 y: 1 z: 1970 = 2 5 197
x: -1561 y: 3 z: 1130 = 2 5 113
x: -1631 y: 3 z: 1250 = 2 5^4
x: 2359 y: 3 z: 4070 = 2 5 11 37
x: 2609 y: 3 z: 4430 = 2 5 443
x: -3511 y: 3 z: 4070 = 2 5 11 37
x: 3607 y: 5 z: 15290 = 2 5 11 139
x: -3761 y: 3 z: 4430 = 2 5 443
x: 4639 y: 3 z: 7330 = 2 5 733
x: 4993 y: 5 z: 18370 = 2 5 11 167
x: 5089 y: 3 z: 7970 = 2 5 797
x: -5791 y: 3 z: 7330 = 2 5 733
x: -6241 y: 3 z: 7970 = 2 5 797
x: 7039 y: 5 z: 22462 = 2 11 1021
x: -8119 y: -1 z: 11482 = 2 5741
x: -8119 y: 0 z: 11482 = 2 5741
x: -8119 y: 1 z: 11482 = 2 5741
x: 8119 y: -1 z: 11482 = 2 5741
x: 8119 y: 0 z: 11482 = 2 5741
x: 8119 y: 1 z: 11482 = 2 5741
x: 9041 y: 5 z: 26158 = 2 11 29 41
x: 16369 y: 3 z: 23950 = 2 5^2 479
x: 17489 y: 5 z: 40238 = 2 11 31 59
x: -17521 y: 3 z: 23950 = 2 5^2 479
x: 17839 y: 3 z: 26030 = 2 5 19 137
x: -18991 y: 3 z: 26030 = 2 5 19 137
$endgroup$
add a comment |
$begingroup$
The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
$$ x_{n+2} = 6 x_{n+1} - x_n. $$
I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.
Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
cannopt be expressed as $w^2 - 2 v^2$ in integers.
jagy@phobeusjunior:~$ ./mse
x: -1 y: -1 z: 2 = 2
x: -1 y: 0 z: 2 = 2
x: -1 y: 1 z: 2 = 2
x: 1 y: -1 z: 2 = 2
x: 1 y: 0 z: 2 = 2
x: 1 y: 1 z: 2 = 2
x: -7 y: -1 z: 10 = 2 5
x: -7 y: 0 z: 10 = 2 5
x: -7 y: 1 z: 10 = 2 5
x: 7 y: -1 z: 10 = 2 5
x: 7 y: 0 z: 10 = 2 5
x: 7 y: 1 z: 10 = 2 5
x: -41 y: -1 z: 58 = 2 29
x: -41 y: 0 z: 58 = 2 29
x: -41 y: 1 z: 58 = 2 29
x: 41 y: -1 z: 58 = 2 29
x: 41 y: 0 z: 58 = 2 29
x: 41 y: 1 z: 58 = 2 29
x: 89 y: 3 z: 470 = 2 5 47
x: 119 y: 3 z: 550 = 2 5^2 11
x: -239 y: -1 z: 338 = 2 13^2
x: -239 y: 0 z: 338 = 2 13^2
x: -239 y: 1 z: 338 = 2 13^2
x: 239 y: -1 z: 338 = 2 13^2
x: 239 y: 0 z: 338 = 2 13^2
x: 239 y: 1 z: 338 = 2 13^2
x: 329 y: 5 z: 4378 = 2 11 199
x: 409 y: 3 z: 1130 = 2 5 113
x: 479 y: 3 z: 1250 = 2 5^4
x: 791 y: 5 z: 6842 = 2 11 311
x: -1241 y: 3 z: 470 = 2 5 47
x: -1271 y: 3 z: 550 = 2 5^2 11
x: -1393 y: -1 z: 1970 = 2 5 197
x: -1393 y: 0 z: 1970 = 2 5 197
x: -1393 y: 1 z: 1970 = 2 5 197
x: 1393 y: -1 z: 1970 = 2 5 197
x: 1393 y: 0 z: 1970 = 2 5 197
x: 1393 y: 1 z: 1970 = 2 5 197
x: -1561 y: 3 z: 1130 = 2 5 113
x: -1631 y: 3 z: 1250 = 2 5^4
x: 2359 y: 3 z: 4070 = 2 5 11 37
x: 2609 y: 3 z: 4430 = 2 5 443
x: -3511 y: 3 z: 4070 = 2 5 11 37
x: 3607 y: 5 z: 15290 = 2 5 11 139
x: -3761 y: 3 z: 4430 = 2 5 443
x: 4639 y: 3 z: 7330 = 2 5 733
x: 4993 y: 5 z: 18370 = 2 5 11 167
x: 5089 y: 3 z: 7970 = 2 5 797
x: -5791 y: 3 z: 7330 = 2 5 733
x: -6241 y: 3 z: 7970 = 2 5 797
x: 7039 y: 5 z: 22462 = 2 11 1021
x: -8119 y: -1 z: 11482 = 2 5741
x: -8119 y: 0 z: 11482 = 2 5741
x: -8119 y: 1 z: 11482 = 2 5741
x: 8119 y: -1 z: 11482 = 2 5741
x: 8119 y: 0 z: 11482 = 2 5741
x: 8119 y: 1 z: 11482 = 2 5741
x: 9041 y: 5 z: 26158 = 2 11 29 41
x: 16369 y: 3 z: 23950 = 2 5^2 479
x: 17489 y: 5 z: 40238 = 2 11 31 59
x: -17521 y: 3 z: 23950 = 2 5^2 479
x: 17839 y: 3 z: 26030 = 2 5 19 137
x: -18991 y: 3 z: 26030 = 2 5 19 137
$endgroup$
The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
$$ x_{n+2} = 6 x_{n+1} - x_n. $$
I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.
Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
cannopt be expressed as $w^2 - 2 v^2$ in integers.
jagy@phobeusjunior:~$ ./mse
x: -1 y: -1 z: 2 = 2
x: -1 y: 0 z: 2 = 2
x: -1 y: 1 z: 2 = 2
x: 1 y: -1 z: 2 = 2
x: 1 y: 0 z: 2 = 2
x: 1 y: 1 z: 2 = 2
x: -7 y: -1 z: 10 = 2 5
x: -7 y: 0 z: 10 = 2 5
x: -7 y: 1 z: 10 = 2 5
x: 7 y: -1 z: 10 = 2 5
x: 7 y: 0 z: 10 = 2 5
x: 7 y: 1 z: 10 = 2 5
x: -41 y: -1 z: 58 = 2 29
x: -41 y: 0 z: 58 = 2 29
x: -41 y: 1 z: 58 = 2 29
x: 41 y: -1 z: 58 = 2 29
x: 41 y: 0 z: 58 = 2 29
x: 41 y: 1 z: 58 = 2 29
x: 89 y: 3 z: 470 = 2 5 47
x: 119 y: 3 z: 550 = 2 5^2 11
x: -239 y: -1 z: 338 = 2 13^2
x: -239 y: 0 z: 338 = 2 13^2
x: -239 y: 1 z: 338 = 2 13^2
x: 239 y: -1 z: 338 = 2 13^2
x: 239 y: 0 z: 338 = 2 13^2
x: 239 y: 1 z: 338 = 2 13^2
x: 329 y: 5 z: 4378 = 2 11 199
x: 409 y: 3 z: 1130 = 2 5 113
x: 479 y: 3 z: 1250 = 2 5^4
x: 791 y: 5 z: 6842 = 2 11 311
x: -1241 y: 3 z: 470 = 2 5 47
x: -1271 y: 3 z: 550 = 2 5^2 11
x: -1393 y: -1 z: 1970 = 2 5 197
x: -1393 y: 0 z: 1970 = 2 5 197
x: -1393 y: 1 z: 1970 = 2 5 197
x: 1393 y: -1 z: 1970 = 2 5 197
x: 1393 y: 0 z: 1970 = 2 5 197
x: 1393 y: 1 z: 1970 = 2 5 197
x: -1561 y: 3 z: 1130 = 2 5 113
x: -1631 y: 3 z: 1250 = 2 5^4
x: 2359 y: 3 z: 4070 = 2 5 11 37
x: 2609 y: 3 z: 4430 = 2 5 443
x: -3511 y: 3 z: 4070 = 2 5 11 37
x: 3607 y: 5 z: 15290 = 2 5 11 139
x: -3761 y: 3 z: 4430 = 2 5 443
x: 4639 y: 3 z: 7330 = 2 5 733
x: 4993 y: 5 z: 18370 = 2 5 11 167
x: 5089 y: 3 z: 7970 = 2 5 797
x: -5791 y: 3 z: 7330 = 2 5 733
x: -6241 y: 3 z: 7970 = 2 5 797
x: 7039 y: 5 z: 22462 = 2 11 1021
x: -8119 y: -1 z: 11482 = 2 5741
x: -8119 y: 0 z: 11482 = 2 5741
x: -8119 y: 1 z: 11482 = 2 5741
x: 8119 y: -1 z: 11482 = 2 5741
x: 8119 y: 0 z: 11482 = 2 5741
x: 8119 y: 1 z: 11482 = 2 5741
x: 9041 y: 5 z: 26158 = 2 11 29 41
x: 16369 y: 3 z: 23950 = 2 5^2 479
x: 17489 y: 5 z: 40238 = 2 11 31 59
x: -17521 y: 3 z: 23950 = 2 5^2 479
x: 17839 y: 3 z: 26030 = 2 5 19 137
x: -18991 y: 3 z: 26030 = 2 5 19 137
edited Jan 28 at 3:07
answered Jan 28 at 1:34
Will JagyWill Jagy
104k5102201
104k5102201
add a comment |
add a comment |
$begingroup$
Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
$$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
$$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 13271 = 23 577
Sun Jan 27 18:25:45 PST 2019
w: 133 v: 47 SEED KEEP +-
w: 139 v: 55 SEED KEEP +-
w: 197 v: 113 SEED BACK ONE STEP 139 , -55
w: 211 v: 125 SEED BACK ONE STEP 133 , -47
w: 587 v: 407
w: 637 v: 443
w: 1043 v: 733
w: 1133 v: 797
w: 3389 v: 2395
w: 3683 v: 2603
w: 6061 v: 4285
w: 6587 v: 4657
w: 19747 v: 13963
w: 21461 v: 15175
w: 35323 v: 24977
w: 38389 v: 27145
w: 115093 v: 81383
w: 125083 v: 88447
w: 205877 v: 145577
w: 223747 v: 158213
w: 670811 v: 474335
w: 729037 v: 515507
w: 1199939 v: 848485
w: 1304093 v: 922133
w: 3909773 v: 2764627
w: 4249139 v: 3004595
w: 6993757 v: 4945333
w: 7600811 v: 5374585
Sun Jan 27 18:26:11 PST 2019
w^2 - 2 v^2 = 13271 = 23 577
jagy@phobeusjunior:~$
$endgroup$
add a comment |
$begingroup$
Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
$$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
$$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 13271 = 23 577
Sun Jan 27 18:25:45 PST 2019
w: 133 v: 47 SEED KEEP +-
w: 139 v: 55 SEED KEEP +-
w: 197 v: 113 SEED BACK ONE STEP 139 , -55
w: 211 v: 125 SEED BACK ONE STEP 133 , -47
w: 587 v: 407
w: 637 v: 443
w: 1043 v: 733
w: 1133 v: 797
w: 3389 v: 2395
w: 3683 v: 2603
w: 6061 v: 4285
w: 6587 v: 4657
w: 19747 v: 13963
w: 21461 v: 15175
w: 35323 v: 24977
w: 38389 v: 27145
w: 115093 v: 81383
w: 125083 v: 88447
w: 205877 v: 145577
w: 223747 v: 158213
w: 670811 v: 474335
w: 729037 v: 515507
w: 1199939 v: 848485
w: 1304093 v: 922133
w: 3909773 v: 2764627
w: 4249139 v: 3004595
w: 6993757 v: 4945333
w: 7600811 v: 5374585
Sun Jan 27 18:26:11 PST 2019
w^2 - 2 v^2 = 13271 = 23 577
jagy@phobeusjunior:~$
$endgroup$
add a comment |
$begingroup$
Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
$$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
$$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 13271 = 23 577
Sun Jan 27 18:25:45 PST 2019
w: 133 v: 47 SEED KEEP +-
w: 139 v: 55 SEED KEEP +-
w: 197 v: 113 SEED BACK ONE STEP 139 , -55
w: 211 v: 125 SEED BACK ONE STEP 133 , -47
w: 587 v: 407
w: 637 v: 443
w: 1043 v: 733
w: 1133 v: 797
w: 3389 v: 2395
w: 3683 v: 2603
w: 6061 v: 4285
w: 6587 v: 4657
w: 19747 v: 13963
w: 21461 v: 15175
w: 35323 v: 24977
w: 38389 v: 27145
w: 115093 v: 81383
w: 125083 v: 88447
w: 205877 v: 145577
w: 223747 v: 158213
w: 670811 v: 474335
w: 729037 v: 515507
w: 1199939 v: 848485
w: 1304093 v: 922133
w: 3909773 v: 2764627
w: 4249139 v: 3004595
w: 6993757 v: 4945333
w: 7600811 v: 5374585
Sun Jan 27 18:26:11 PST 2019
w^2 - 2 v^2 = 13271 = 23 577
jagy@phobeusjunior:~$
$endgroup$
Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
$$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
$$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3
3^2 - 2 2^2 = 1
w^2 - 2 v^2 = 13271 = 23 577
Sun Jan 27 18:25:45 PST 2019
w: 133 v: 47 SEED KEEP +-
w: 139 v: 55 SEED KEEP +-
w: 197 v: 113 SEED BACK ONE STEP 139 , -55
w: 211 v: 125 SEED BACK ONE STEP 133 , -47
w: 587 v: 407
w: 637 v: 443
w: 1043 v: 733
w: 1133 v: 797
w: 3389 v: 2395
w: 3683 v: 2603
w: 6061 v: 4285
w: 6587 v: 4657
w: 19747 v: 13963
w: 21461 v: 15175
w: 35323 v: 24977
w: 38389 v: 27145
w: 115093 v: 81383
w: 125083 v: 88447
w: 205877 v: 145577
w: 223747 v: 158213
w: 670811 v: 474335
w: 729037 v: 515507
w: 1199939 v: 848485
w: 1304093 v: 922133
w: 3909773 v: 2764627
w: 4249139 v: 3004595
w: 6993757 v: 4945333
w: 7600811 v: 5374585
Sun Jan 27 18:26:11 PST 2019
w^2 - 2 v^2 = 13271 = 23 577
jagy@phobeusjunior:~$
edited Jan 28 at 2:32
answered Jan 28 at 2:24
Will JagyWill Jagy
104k5102201
104k5102201
add a comment |
add a comment |
$begingroup$
jagy@phobeusjunior:~$ ./mse
x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
x: 15226951 y: 40 z: 499630198 = 2 607 411557
x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
x: 35790119 y: 40 z: 766951382 = 2 383475691
x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023
$endgroup$
add a comment |
$begingroup$
jagy@phobeusjunior:~$ ./mse
x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
x: 15226951 y: 40 z: 499630198 = 2 607 411557
x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
x: 35790119 y: 40 z: 766951382 = 2 383475691
x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023
$endgroup$
add a comment |
$begingroup$
jagy@phobeusjunior:~$ ./mse
x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
x: 15226951 y: 40 z: 499630198 = 2 607 411557
x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
x: 35790119 y: 40 z: 766951382 = 2 383475691
x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023
$endgroup$
jagy@phobeusjunior:~$ ./mse
x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
x: 15226951 y: 40 z: 499630198 = 2 607 411557
x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
x: 35790119 y: 40 z: 766951382 = 2 383475691
x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023
answered Jan 28 at 3:36
Will JagyWill Jagy
104k5102201
104k5102201
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090286%2frational-solutions-of-21x24xy-y32-z2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20
$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23
$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23
$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25