Rational solutions of $2(1+x^2)+4x(y-y^3)^2=z^2$












0












$begingroup$


Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.



This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.



Edit: I am expecting some parametric family of solutions.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    $(x,y,z)=(7,1,10)$ works (by a simple search).
    $endgroup$
    – lulu
    Jan 28 at 0:20










  • $begingroup$
    Good! Though I am expecting some parametric solution.
    $endgroup$
    – ersh
    Jan 28 at 0:23










  • $begingroup$
    Then you should edit your post to ask for that.
    $endgroup$
    – lulu
    Jan 28 at 0:23










  • $begingroup$
    Thanks!. Done!.
    $endgroup$
    – ersh
    Jan 28 at 0:25
















0












$begingroup$


Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.



This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.



Edit: I am expecting some parametric family of solutions.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    $(x,y,z)=(7,1,10)$ works (by a simple search).
    $endgroup$
    – lulu
    Jan 28 at 0:20










  • $begingroup$
    Good! Though I am expecting some parametric solution.
    $endgroup$
    – ersh
    Jan 28 at 0:23










  • $begingroup$
    Then you should edit your post to ask for that.
    $endgroup$
    – lulu
    Jan 28 at 0:23










  • $begingroup$
    Thanks!. Done!.
    $endgroup$
    – ersh
    Jan 28 at 0:25














0












0








0


1



$begingroup$


Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.



This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.



Edit: I am expecting some parametric family of solutions.










share|cite|improve this question











$endgroup$




Does there exist a non-trivial rational solution of $2(1+x^2)+4x(y-y^3)^2=z^2$.



This equation might seem very uninteresting to many of you but it has resulted after solving many simultaneous Diophantine systems. My answer depends upon this one.



Edit: I am expecting some parametric family of solutions.







number-theory diophantine-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 28 at 0:24







ersh

















asked Jan 28 at 0:11









ershersh

438113




438113








  • 2




    $begingroup$
    $(x,y,z)=(7,1,10)$ works (by a simple search).
    $endgroup$
    – lulu
    Jan 28 at 0:20










  • $begingroup$
    Good! Though I am expecting some parametric solution.
    $endgroup$
    – ersh
    Jan 28 at 0:23










  • $begingroup$
    Then you should edit your post to ask for that.
    $endgroup$
    – lulu
    Jan 28 at 0:23










  • $begingroup$
    Thanks!. Done!.
    $endgroup$
    – ersh
    Jan 28 at 0:25














  • 2




    $begingroup$
    $(x,y,z)=(7,1,10)$ works (by a simple search).
    $endgroup$
    – lulu
    Jan 28 at 0:20










  • $begingroup$
    Good! Though I am expecting some parametric solution.
    $endgroup$
    – ersh
    Jan 28 at 0:23










  • $begingroup$
    Then you should edit your post to ask for that.
    $endgroup$
    – lulu
    Jan 28 at 0:23










  • $begingroup$
    Thanks!. Done!.
    $endgroup$
    – ersh
    Jan 28 at 0:25








2




2




$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20




$begingroup$
$(x,y,z)=(7,1,10)$ works (by a simple search).
$endgroup$
– lulu
Jan 28 at 0:20












$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23




$begingroup$
Good! Though I am expecting some parametric solution.
$endgroup$
– ersh
Jan 28 at 0:23












$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23




$begingroup$
Then you should edit your post to ask for that.
$endgroup$
– lulu
Jan 28 at 0:23












$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25




$begingroup$
Thanks!. Done!.
$endgroup$
– ersh
Jan 28 at 0:25










4 Answers
4






active

oldest

votes


















1












$begingroup$

Taking $y=5$ gives
$$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
$$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$



jagy@phobeusjunior:~$ date
Sun Jan 27 18:51:05 PST 2019
jagy@phobeusjunior:~$
./Pell_Target_Fundamental
Automorphism matrix:
3 4
2 3
Automorphism backwards:
3 -4
-2 3

3^2 - 2 2^2 = 1

w^2 - 2 v^2 = 1713719 = 7 17 14401

Sun Jan 27 18:51:08 PST 2019

w: 1339 v: 199 SEED KEEP +-
w: 1381 v: 311 SEED KEEP +-
w: 1637 v: 695 SEED KEEP +-
w: 1763 v: 835 SEED KEEP +-
w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
w: 4813 v: 3275
w: 5387 v: 3695
w: 7691 v: 5359
w: 8629 v: 6031
w: 9931 v: 6961
w: 11149 v: 7829
w: 16013 v: 11285
w: 17987 v: 12685
w: 27539 v: 19451
w: 30941 v: 21859
w: 44509 v: 31459
w: 50011 v: 35351
w: 57637 v: 40745
w: 64763 v: 45785
w: 93179 v: 65881
w: 104701 v: 74029
w: 160421 v: 113431
w: 180259 v: 127459
w: 259363 v: 183395
w: 291437 v: 206075
w: 335891 v: 237509
w: 377429 v: 266881
w: 543061 v: 384001
w: 610219 v: 431489
w: 934987 v: 661135
w: 1050613 v: 742895
w: 1511669 v: 1068911
w: 1698611 v: 1201099
w: 1957709 v: 1384309
w: 2199811 v: 1555501
w: 3165187 v: 2238125
w: 3556613 v: 2514905
w: 5449501 v: 3853379
w: 6123419 v: 4329911
w: 8810651 v: 6230071
w: 9900229 v: 7000519
w: 11410363 v: 8068345
w: 12821437 v: 9066125

Sun Jan 27 18:51:33 PST 2019

w^2 - 2 v^2 = 1713719 = 7 17 14401

jagy@phobeusjunior:~$





share|cite|improve this answer









$endgroup$













  • $begingroup$
    I will work with what you have provided. I will be back.
    $endgroup$
    – ersh
    Jan 28 at 2:58






  • 1




    $begingroup$
    @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
    $endgroup$
    – Will Jagy
    Jan 28 at 3:21



















2












$begingroup$

The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
$$ x_{n+2} = 6 x_{n+1} - x_n. $$
I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.



Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
cannopt be expressed as $w^2 - 2 v^2$ in integers.



jagy@phobeusjunior:~$ ./mse
x: -1 y: -1 z: 2 = 2
x: -1 y: 0 z: 2 = 2
x: -1 y: 1 z: 2 = 2
x: 1 y: -1 z: 2 = 2
x: 1 y: 0 z: 2 = 2
x: 1 y: 1 z: 2 = 2
x: -7 y: -1 z: 10 = 2 5
x: -7 y: 0 z: 10 = 2 5
x: -7 y: 1 z: 10 = 2 5
x: 7 y: -1 z: 10 = 2 5
x: 7 y: 0 z: 10 = 2 5
x: 7 y: 1 z: 10 = 2 5
x: -41 y: -1 z: 58 = 2 29
x: -41 y: 0 z: 58 = 2 29
x: -41 y: 1 z: 58 = 2 29
x: 41 y: -1 z: 58 = 2 29
x: 41 y: 0 z: 58 = 2 29
x: 41 y: 1 z: 58 = 2 29
x: 89 y: 3 z: 470 = 2 5 47
x: 119 y: 3 z: 550 = 2 5^2 11
x: -239 y: -1 z: 338 = 2 13^2
x: -239 y: 0 z: 338 = 2 13^2
x: -239 y: 1 z: 338 = 2 13^2
x: 239 y: -1 z: 338 = 2 13^2
x: 239 y: 0 z: 338 = 2 13^2
x: 239 y: 1 z: 338 = 2 13^2
x: 329 y: 5 z: 4378 = 2 11 199
x: 409 y: 3 z: 1130 = 2 5 113
x: 479 y: 3 z: 1250 = 2 5^4
x: 791 y: 5 z: 6842 = 2 11 311
x: -1241 y: 3 z: 470 = 2 5 47
x: -1271 y: 3 z: 550 = 2 5^2 11
x: -1393 y: -1 z: 1970 = 2 5 197
x: -1393 y: 0 z: 1970 = 2 5 197
x: -1393 y: 1 z: 1970 = 2 5 197
x: 1393 y: -1 z: 1970 = 2 5 197
x: 1393 y: 0 z: 1970 = 2 5 197
x: 1393 y: 1 z: 1970 = 2 5 197
x: -1561 y: 3 z: 1130 = 2 5 113
x: -1631 y: 3 z: 1250 = 2 5^4
x: 2359 y: 3 z: 4070 = 2 5 11 37
x: 2609 y: 3 z: 4430 = 2 5 443
x: -3511 y: 3 z: 4070 = 2 5 11 37
x: 3607 y: 5 z: 15290 = 2 5 11 139
x: -3761 y: 3 z: 4430 = 2 5 443
x: 4639 y: 3 z: 7330 = 2 5 733
x: 4993 y: 5 z: 18370 = 2 5 11 167
x: 5089 y: 3 z: 7970 = 2 5 797
x: -5791 y: 3 z: 7330 = 2 5 733
x: -6241 y: 3 z: 7970 = 2 5 797
x: 7039 y: 5 z: 22462 = 2 11 1021
x: -8119 y: -1 z: 11482 = 2 5741
x: -8119 y: 0 z: 11482 = 2 5741
x: -8119 y: 1 z: 11482 = 2 5741
x: 8119 y: -1 z: 11482 = 2 5741
x: 8119 y: 0 z: 11482 = 2 5741
x: 8119 y: 1 z: 11482 = 2 5741
x: 9041 y: 5 z: 26158 = 2 11 29 41
x: 16369 y: 3 z: 23950 = 2 5^2 479
x: 17489 y: 5 z: 40238 = 2 11 31 59
x: -17521 y: 3 z: 23950 = 2 5^2 479
x: 17839 y: 3 z: 26030 = 2 5 19 137
x: -18991 y: 3 z: 26030 = 2 5 19 137





share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
    $$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
    There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
    $$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
    For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.



    jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
    Automorphism matrix:
    3 4
    2 3
    Automorphism backwards:
    3 -4
    -2 3

    3^2 - 2 2^2 = 1

    w^2 - 2 v^2 = 13271 = 23 577

    Sun Jan 27 18:25:45 PST 2019

    w: 133 v: 47 SEED KEEP +-
    w: 139 v: 55 SEED KEEP +-
    w: 197 v: 113 SEED BACK ONE STEP 139 , -55
    w: 211 v: 125 SEED BACK ONE STEP 133 , -47
    w: 587 v: 407
    w: 637 v: 443
    w: 1043 v: 733
    w: 1133 v: 797
    w: 3389 v: 2395
    w: 3683 v: 2603
    w: 6061 v: 4285
    w: 6587 v: 4657
    w: 19747 v: 13963
    w: 21461 v: 15175
    w: 35323 v: 24977
    w: 38389 v: 27145
    w: 115093 v: 81383
    w: 125083 v: 88447
    w: 205877 v: 145577
    w: 223747 v: 158213
    w: 670811 v: 474335
    w: 729037 v: 515507
    w: 1199939 v: 848485
    w: 1304093 v: 922133
    w: 3909773 v: 2764627
    w: 4249139 v: 3004595
    w: 6993757 v: 4945333
    w: 7600811 v: 5374585

    Sun Jan 27 18:26:11 PST 2019

    w^2 - 2 v^2 = 13271 = 23 577

    jagy@phobeusjunior:~$





    share|cite|improve this answer











    $endgroup$





















      1












      $begingroup$

      jagy@phobeusjunior:~$ ./mse
      x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
      x: 15226951 y: 40 z: 499630198 = 2 607 411557
      x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
      x: 35790119 y: 40 z: 766951382 = 2 383475691
      x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
      x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023








      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090286%2frational-solutions-of-21x24xy-y32-z2%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Taking $y=5$ gives
        $$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
        so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
        $$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$



        jagy@phobeusjunior:~$ date
        Sun Jan 27 18:51:05 PST 2019
        jagy@phobeusjunior:~$
        ./Pell_Target_Fundamental
        Automorphism matrix:
        3 4
        2 3
        Automorphism backwards:
        3 -4
        -2 3

        3^2 - 2 2^2 = 1

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        Sun Jan 27 18:51:08 PST 2019

        w: 1339 v: 199 SEED KEEP +-
        w: 1381 v: 311 SEED KEEP +-
        w: 1637 v: 695 SEED KEEP +-
        w: 1763 v: 835 SEED KEEP +-
        w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
        w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
        w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
        w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
        w: 4813 v: 3275
        w: 5387 v: 3695
        w: 7691 v: 5359
        w: 8629 v: 6031
        w: 9931 v: 6961
        w: 11149 v: 7829
        w: 16013 v: 11285
        w: 17987 v: 12685
        w: 27539 v: 19451
        w: 30941 v: 21859
        w: 44509 v: 31459
        w: 50011 v: 35351
        w: 57637 v: 40745
        w: 64763 v: 45785
        w: 93179 v: 65881
        w: 104701 v: 74029
        w: 160421 v: 113431
        w: 180259 v: 127459
        w: 259363 v: 183395
        w: 291437 v: 206075
        w: 335891 v: 237509
        w: 377429 v: 266881
        w: 543061 v: 384001
        w: 610219 v: 431489
        w: 934987 v: 661135
        w: 1050613 v: 742895
        w: 1511669 v: 1068911
        w: 1698611 v: 1201099
        w: 1957709 v: 1384309
        w: 2199811 v: 1555501
        w: 3165187 v: 2238125
        w: 3556613 v: 2514905
        w: 5449501 v: 3853379
        w: 6123419 v: 4329911
        w: 8810651 v: 6230071
        w: 9900229 v: 7000519
        w: 11410363 v: 8068345
        w: 12821437 v: 9066125

        Sun Jan 27 18:51:33 PST 2019

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        jagy@phobeusjunior:~$





        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          I will work with what you have provided. I will be back.
          $endgroup$
          – ersh
          Jan 28 at 2:58






        • 1




          $begingroup$
          @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
          $endgroup$
          – Will Jagy
          Jan 28 at 3:21
















        1












        $begingroup$

        Taking $y=5$ gives
        $$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
        so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
        $$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$



        jagy@phobeusjunior:~$ date
        Sun Jan 27 18:51:05 PST 2019
        jagy@phobeusjunior:~$
        ./Pell_Target_Fundamental
        Automorphism matrix:
        3 4
        2 3
        Automorphism backwards:
        3 -4
        -2 3

        3^2 - 2 2^2 = 1

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        Sun Jan 27 18:51:08 PST 2019

        w: 1339 v: 199 SEED KEEP +-
        w: 1381 v: 311 SEED KEEP +-
        w: 1637 v: 695 SEED KEEP +-
        w: 1763 v: 835 SEED KEEP +-
        w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
        w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
        w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
        w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
        w: 4813 v: 3275
        w: 5387 v: 3695
        w: 7691 v: 5359
        w: 8629 v: 6031
        w: 9931 v: 6961
        w: 11149 v: 7829
        w: 16013 v: 11285
        w: 17987 v: 12685
        w: 27539 v: 19451
        w: 30941 v: 21859
        w: 44509 v: 31459
        w: 50011 v: 35351
        w: 57637 v: 40745
        w: 64763 v: 45785
        w: 93179 v: 65881
        w: 104701 v: 74029
        w: 160421 v: 113431
        w: 180259 v: 127459
        w: 259363 v: 183395
        w: 291437 v: 206075
        w: 335891 v: 237509
        w: 377429 v: 266881
        w: 543061 v: 384001
        w: 610219 v: 431489
        w: 934987 v: 661135
        w: 1050613 v: 742895
        w: 1511669 v: 1068911
        w: 1698611 v: 1201099
        w: 1957709 v: 1384309
        w: 2199811 v: 1555501
        w: 3165187 v: 2238125
        w: 3556613 v: 2514905
        w: 5449501 v: 3853379
        w: 6123419 v: 4329911
        w: 8810651 v: 6230071
        w: 9900229 v: 7000519
        w: 11410363 v: 8068345
        w: 12821437 v: 9066125

        Sun Jan 27 18:51:33 PST 2019

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        jagy@phobeusjunior:~$





        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          I will work with what you have provided. I will be back.
          $endgroup$
          – ersh
          Jan 28 at 2:58






        • 1




          $begingroup$
          @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
          $endgroup$
          – Will Jagy
          Jan 28 at 3:21














        1












        1








        1





        $begingroup$

        Taking $y=5$ gives
        $$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
        so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
        $$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$



        jagy@phobeusjunior:~$ date
        Sun Jan 27 18:51:05 PST 2019
        jagy@phobeusjunior:~$
        ./Pell_Target_Fundamental
        Automorphism matrix:
        3 4
        2 3
        Automorphism backwards:
        3 -4
        -2 3

        3^2 - 2 2^2 = 1

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        Sun Jan 27 18:51:08 PST 2019

        w: 1339 v: 199 SEED KEEP +-
        w: 1381 v: 311 SEED KEEP +-
        w: 1637 v: 695 SEED KEEP +-
        w: 1763 v: 835 SEED KEEP +-
        w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
        w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
        w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
        w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
        w: 4813 v: 3275
        w: 5387 v: 3695
        w: 7691 v: 5359
        w: 8629 v: 6031
        w: 9931 v: 6961
        w: 11149 v: 7829
        w: 16013 v: 11285
        w: 17987 v: 12685
        w: 27539 v: 19451
        w: 30941 v: 21859
        w: 44509 v: 31459
        w: 50011 v: 35351
        w: 57637 v: 40745
        w: 64763 v: 45785
        w: 93179 v: 65881
        w: 104701 v: 74029
        w: 160421 v: 113431
        w: 180259 v: 127459
        w: 259363 v: 183395
        w: 291437 v: 206075
        w: 335891 v: 237509
        w: 377429 v: 266881
        w: 543061 v: 384001
        w: 610219 v: 431489
        w: 934987 v: 661135
        w: 1050613 v: 742895
        w: 1511669 v: 1068911
        w: 1698611 v: 1201099
        w: 1957709 v: 1384309
        w: 2199811 v: 1555501
        w: 3165187 v: 2238125
        w: 3556613 v: 2514905
        w: 5449501 v: 3853379
        w: 6123419 v: 4329911
        w: 8810651 v: 6230071
        w: 9900229 v: 7000519
        w: 11410363 v: 8068345
        w: 12821437 v: 9066125

        Sun Jan 27 18:51:33 PST 2019

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        jagy@phobeusjunior:~$





        share|cite|improve this answer









        $endgroup$



        Taking $y=5$ gives
        $$ (x+ 120^2)^2 - 2 t^2 = 120^4 - 1 = 11^2 cdot 7 cdot 17 cdot 14401 $$
        so $x + 120^2 = pm 11 w$ and $t = 11 v$ and
        $$ w^2 - 2 v^2 = 7 cdot 17 cdot 14401 = 1713719$$



        jagy@phobeusjunior:~$ date
        Sun Jan 27 18:51:05 PST 2019
        jagy@phobeusjunior:~$
        ./Pell_Target_Fundamental
        Automorphism matrix:
        3 4
        2 3
        Automorphism backwards:
        3 -4
        -2 3

        3^2 - 2 2^2 = 1

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        Sun Jan 27 18:51:08 PST 2019

        w: 1339 v: 199 SEED KEEP +-
        w: 1381 v: 311 SEED KEEP +-
        w: 1637 v: 695 SEED KEEP +-
        w: 1763 v: 835 SEED KEEP +-
        w: 1949 v: 1021 SEED BACK ONE STEP 1763 , -835
        w: 2131 v: 1189 SEED BACK ONE STEP 1637 , -695
        w: 2899 v: 1829 SEED BACK ONE STEP 1381 , -311
        w: 3221 v: 2081 SEED BACK ONE STEP 1339 , -199
        w: 4813 v: 3275
        w: 5387 v: 3695
        w: 7691 v: 5359
        w: 8629 v: 6031
        w: 9931 v: 6961
        w: 11149 v: 7829
        w: 16013 v: 11285
        w: 17987 v: 12685
        w: 27539 v: 19451
        w: 30941 v: 21859
        w: 44509 v: 31459
        w: 50011 v: 35351
        w: 57637 v: 40745
        w: 64763 v: 45785
        w: 93179 v: 65881
        w: 104701 v: 74029
        w: 160421 v: 113431
        w: 180259 v: 127459
        w: 259363 v: 183395
        w: 291437 v: 206075
        w: 335891 v: 237509
        w: 377429 v: 266881
        w: 543061 v: 384001
        w: 610219 v: 431489
        w: 934987 v: 661135
        w: 1050613 v: 742895
        w: 1511669 v: 1068911
        w: 1698611 v: 1201099
        w: 1957709 v: 1384309
        w: 2199811 v: 1555501
        w: 3165187 v: 2238125
        w: 3556613 v: 2514905
        w: 5449501 v: 3853379
        w: 6123419 v: 4329911
        w: 8810651 v: 6230071
        w: 9900229 v: 7000519
        w: 11410363 v: 8068345
        w: 12821437 v: 9066125

        Sun Jan 27 18:51:33 PST 2019

        w^2 - 2 v^2 = 1713719 = 7 17 14401

        jagy@phobeusjunior:~$






        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 28 at 2:53









        Will JagyWill Jagy

        104k5102201




        104k5102201












        • $begingroup$
          I will work with what you have provided. I will be back.
          $endgroup$
          – ersh
          Jan 28 at 2:58






        • 1




          $begingroup$
          @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
          $endgroup$
          – Will Jagy
          Jan 28 at 3:21


















        • $begingroup$
          I will work with what you have provided. I will be back.
          $endgroup$
          – ersh
          Jan 28 at 2:58






        • 1




          $begingroup$
          @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
          $endgroup$
          – Will Jagy
          Jan 28 at 3:21
















        $begingroup$
        I will work with what you have provided. I will be back.
        $endgroup$
        – ersh
        Jan 28 at 2:58




        $begingroup$
        I will work with what you have provided. I will be back.
        $endgroup$
        – ersh
        Jan 28 at 2:58




        1




        1




        $begingroup$
        @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
        $endgroup$
        – Will Jagy
        Jan 28 at 3:21




        $begingroup$
        @ersh after $5,$ the next few $y$ that work are $11,15,21.$ Also, $y=40$ works, so some even $y$ are possible.
        $endgroup$
        – Will Jagy
        Jan 28 at 3:21











        2












        $begingroup$

        The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
        $$ x_{n+2} = 6 x_{n+1} - x_n. $$
        I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.



        Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
        cannopt be expressed as $w^2 - 2 v^2$ in integers.



        jagy@phobeusjunior:~$ ./mse
        x: -1 y: -1 z: 2 = 2
        x: -1 y: 0 z: 2 = 2
        x: -1 y: 1 z: 2 = 2
        x: 1 y: -1 z: 2 = 2
        x: 1 y: 0 z: 2 = 2
        x: 1 y: 1 z: 2 = 2
        x: -7 y: -1 z: 10 = 2 5
        x: -7 y: 0 z: 10 = 2 5
        x: -7 y: 1 z: 10 = 2 5
        x: 7 y: -1 z: 10 = 2 5
        x: 7 y: 0 z: 10 = 2 5
        x: 7 y: 1 z: 10 = 2 5
        x: -41 y: -1 z: 58 = 2 29
        x: -41 y: 0 z: 58 = 2 29
        x: -41 y: 1 z: 58 = 2 29
        x: 41 y: -1 z: 58 = 2 29
        x: 41 y: 0 z: 58 = 2 29
        x: 41 y: 1 z: 58 = 2 29
        x: 89 y: 3 z: 470 = 2 5 47
        x: 119 y: 3 z: 550 = 2 5^2 11
        x: -239 y: -1 z: 338 = 2 13^2
        x: -239 y: 0 z: 338 = 2 13^2
        x: -239 y: 1 z: 338 = 2 13^2
        x: 239 y: -1 z: 338 = 2 13^2
        x: 239 y: 0 z: 338 = 2 13^2
        x: 239 y: 1 z: 338 = 2 13^2
        x: 329 y: 5 z: 4378 = 2 11 199
        x: 409 y: 3 z: 1130 = 2 5 113
        x: 479 y: 3 z: 1250 = 2 5^4
        x: 791 y: 5 z: 6842 = 2 11 311
        x: -1241 y: 3 z: 470 = 2 5 47
        x: -1271 y: 3 z: 550 = 2 5^2 11
        x: -1393 y: -1 z: 1970 = 2 5 197
        x: -1393 y: 0 z: 1970 = 2 5 197
        x: -1393 y: 1 z: 1970 = 2 5 197
        x: 1393 y: -1 z: 1970 = 2 5 197
        x: 1393 y: 0 z: 1970 = 2 5 197
        x: 1393 y: 1 z: 1970 = 2 5 197
        x: -1561 y: 3 z: 1130 = 2 5 113
        x: -1631 y: 3 z: 1250 = 2 5^4
        x: 2359 y: 3 z: 4070 = 2 5 11 37
        x: 2609 y: 3 z: 4430 = 2 5 443
        x: -3511 y: 3 z: 4070 = 2 5 11 37
        x: 3607 y: 5 z: 15290 = 2 5 11 139
        x: -3761 y: 3 z: 4430 = 2 5 443
        x: 4639 y: 3 z: 7330 = 2 5 733
        x: 4993 y: 5 z: 18370 = 2 5 11 167
        x: 5089 y: 3 z: 7970 = 2 5 797
        x: -5791 y: 3 z: 7330 = 2 5 733
        x: -6241 y: 3 z: 7970 = 2 5 797
        x: 7039 y: 5 z: 22462 = 2 11 1021
        x: -8119 y: -1 z: 11482 = 2 5741
        x: -8119 y: 0 z: 11482 = 2 5741
        x: -8119 y: 1 z: 11482 = 2 5741
        x: 8119 y: -1 z: 11482 = 2 5741
        x: 8119 y: 0 z: 11482 = 2 5741
        x: 8119 y: 1 z: 11482 = 2 5741
        x: 9041 y: 5 z: 26158 = 2 11 29 41
        x: 16369 y: 3 z: 23950 = 2 5^2 479
        x: 17489 y: 5 z: 40238 = 2 11 31 59
        x: -17521 y: 3 z: 23950 = 2 5^2 479
        x: 17839 y: 3 z: 26030 = 2 5 19 137
        x: -18991 y: 3 z: 26030 = 2 5 19 137





        share|cite|improve this answer











        $endgroup$


















          2












          $begingroup$

          The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
          $$ x_{n+2} = 6 x_{n+1} - x_n. $$
          I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.



          Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
          cannopt be expressed as $w^2 - 2 v^2$ in integers.



          jagy@phobeusjunior:~$ ./mse
          x: -1 y: -1 z: 2 = 2
          x: -1 y: 0 z: 2 = 2
          x: -1 y: 1 z: 2 = 2
          x: 1 y: -1 z: 2 = 2
          x: 1 y: 0 z: 2 = 2
          x: 1 y: 1 z: 2 = 2
          x: -7 y: -1 z: 10 = 2 5
          x: -7 y: 0 z: 10 = 2 5
          x: -7 y: 1 z: 10 = 2 5
          x: 7 y: -1 z: 10 = 2 5
          x: 7 y: 0 z: 10 = 2 5
          x: 7 y: 1 z: 10 = 2 5
          x: -41 y: -1 z: 58 = 2 29
          x: -41 y: 0 z: 58 = 2 29
          x: -41 y: 1 z: 58 = 2 29
          x: 41 y: -1 z: 58 = 2 29
          x: 41 y: 0 z: 58 = 2 29
          x: 41 y: 1 z: 58 = 2 29
          x: 89 y: 3 z: 470 = 2 5 47
          x: 119 y: 3 z: 550 = 2 5^2 11
          x: -239 y: -1 z: 338 = 2 13^2
          x: -239 y: 0 z: 338 = 2 13^2
          x: -239 y: 1 z: 338 = 2 13^2
          x: 239 y: -1 z: 338 = 2 13^2
          x: 239 y: 0 z: 338 = 2 13^2
          x: 239 y: 1 z: 338 = 2 13^2
          x: 329 y: 5 z: 4378 = 2 11 199
          x: 409 y: 3 z: 1130 = 2 5 113
          x: 479 y: 3 z: 1250 = 2 5^4
          x: 791 y: 5 z: 6842 = 2 11 311
          x: -1241 y: 3 z: 470 = 2 5 47
          x: -1271 y: 3 z: 550 = 2 5^2 11
          x: -1393 y: -1 z: 1970 = 2 5 197
          x: -1393 y: 0 z: 1970 = 2 5 197
          x: -1393 y: 1 z: 1970 = 2 5 197
          x: 1393 y: -1 z: 1970 = 2 5 197
          x: 1393 y: 0 z: 1970 = 2 5 197
          x: 1393 y: 1 z: 1970 = 2 5 197
          x: -1561 y: 3 z: 1130 = 2 5 113
          x: -1631 y: 3 z: 1250 = 2 5^4
          x: 2359 y: 3 z: 4070 = 2 5 11 37
          x: 2609 y: 3 z: 4430 = 2 5 443
          x: -3511 y: 3 z: 4070 = 2 5 11 37
          x: 3607 y: 5 z: 15290 = 2 5 11 139
          x: -3761 y: 3 z: 4430 = 2 5 443
          x: 4639 y: 3 z: 7330 = 2 5 733
          x: 4993 y: 5 z: 18370 = 2 5 11 167
          x: 5089 y: 3 z: 7970 = 2 5 797
          x: -5791 y: 3 z: 7330 = 2 5 733
          x: -6241 y: 3 z: 7970 = 2 5 797
          x: 7039 y: 5 z: 22462 = 2 11 1021
          x: -8119 y: -1 z: 11482 = 2 5741
          x: -8119 y: 0 z: 11482 = 2 5741
          x: -8119 y: 1 z: 11482 = 2 5741
          x: 8119 y: -1 z: 11482 = 2 5741
          x: 8119 y: 0 z: 11482 = 2 5741
          x: 8119 y: 1 z: 11482 = 2 5741
          x: 9041 y: 5 z: 26158 = 2 11 29 41
          x: 16369 y: 3 z: 23950 = 2 5^2 479
          x: 17489 y: 5 z: 40238 = 2 11 31 59
          x: -17521 y: 3 z: 23950 = 2 5^2 479
          x: 17839 y: 3 z: 26030 = 2 5 19 137
          x: -18991 y: 3 z: 26030 = 2 5 19 137





          share|cite|improve this answer











          $endgroup$
















            2












            2








            2





            $begingroup$

            The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
            $$ x_{n+2} = 6 x_{n+1} - x_n. $$
            I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.



            Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
            cannopt be expressed as $w^2 - 2 v^2$ in integers.



            jagy@phobeusjunior:~$ ./mse
            x: -1 y: -1 z: 2 = 2
            x: -1 y: 0 z: 2 = 2
            x: -1 y: 1 z: 2 = 2
            x: 1 y: -1 z: 2 = 2
            x: 1 y: 0 z: 2 = 2
            x: 1 y: 1 z: 2 = 2
            x: -7 y: -1 z: 10 = 2 5
            x: -7 y: 0 z: 10 = 2 5
            x: -7 y: 1 z: 10 = 2 5
            x: 7 y: -1 z: 10 = 2 5
            x: 7 y: 0 z: 10 = 2 5
            x: 7 y: 1 z: 10 = 2 5
            x: -41 y: -1 z: 58 = 2 29
            x: -41 y: 0 z: 58 = 2 29
            x: -41 y: 1 z: 58 = 2 29
            x: 41 y: -1 z: 58 = 2 29
            x: 41 y: 0 z: 58 = 2 29
            x: 41 y: 1 z: 58 = 2 29
            x: 89 y: 3 z: 470 = 2 5 47
            x: 119 y: 3 z: 550 = 2 5^2 11
            x: -239 y: -1 z: 338 = 2 13^2
            x: -239 y: 0 z: 338 = 2 13^2
            x: -239 y: 1 z: 338 = 2 13^2
            x: 239 y: -1 z: 338 = 2 13^2
            x: 239 y: 0 z: 338 = 2 13^2
            x: 239 y: 1 z: 338 = 2 13^2
            x: 329 y: 5 z: 4378 = 2 11 199
            x: 409 y: 3 z: 1130 = 2 5 113
            x: 479 y: 3 z: 1250 = 2 5^4
            x: 791 y: 5 z: 6842 = 2 11 311
            x: -1241 y: 3 z: 470 = 2 5 47
            x: -1271 y: 3 z: 550 = 2 5^2 11
            x: -1393 y: -1 z: 1970 = 2 5 197
            x: -1393 y: 0 z: 1970 = 2 5 197
            x: -1393 y: 1 z: 1970 = 2 5 197
            x: 1393 y: -1 z: 1970 = 2 5 197
            x: 1393 y: 0 z: 1970 = 2 5 197
            x: 1393 y: 1 z: 1970 = 2 5 197
            x: -1561 y: 3 z: 1130 = 2 5 113
            x: -1631 y: 3 z: 1250 = 2 5^4
            x: 2359 y: 3 z: 4070 = 2 5 11 37
            x: 2609 y: 3 z: 4430 = 2 5 443
            x: -3511 y: 3 z: 4070 = 2 5 11 37
            x: 3607 y: 5 z: 15290 = 2 5 11 139
            x: -3761 y: 3 z: 4430 = 2 5 443
            x: 4639 y: 3 z: 7330 = 2 5 733
            x: 4993 y: 5 z: 18370 = 2 5 11 167
            x: 5089 y: 3 z: 7970 = 2 5 797
            x: -5791 y: 3 z: 7330 = 2 5 733
            x: -6241 y: 3 z: 7970 = 2 5 797
            x: 7039 y: 5 z: 22462 = 2 11 1021
            x: -8119 y: -1 z: 11482 = 2 5741
            x: -8119 y: 0 z: 11482 = 2 5741
            x: -8119 y: 1 z: 11482 = 2 5741
            x: 8119 y: -1 z: 11482 = 2 5741
            x: 8119 y: 0 z: 11482 = 2 5741
            x: 8119 y: 1 z: 11482 = 2 5741
            x: 9041 y: 5 z: 26158 = 2 11 29 41
            x: 16369 y: 3 z: 23950 = 2 5^2 479
            x: 17489 y: 5 z: 40238 = 2 11 31 59
            x: -17521 y: 3 z: 23950 = 2 5^2 479
            x: 17839 y: 3 z: 26030 = 2 5 19 137
            x: -18991 y: 3 z: 26030 = 2 5 19 137





            share|cite|improve this answer











            $endgroup$



            The positive $x$ for which both $x$ and $-x$ give a solution come in the sequence $x_0 = 1,$ $x_1 = 7,$ then
            $$ x_{n+2} = 6 x_{n+1} - x_n. $$
            I see, in these cases we have $y-y^3 = 0.$ This suggests trying to gather the other $x$ values by the value of $y$ that works. Hmmm.



            Alright, I put $y=3$ and $y = 5$ as separate answers. There are plenty of $y$ that do not work at all. If $y=7,$ we find $y^3 - y = 336.$ This is bad, as $336^4 - 1 = 5 cdot 17 cdot 29 cdot 67 cdot 229 cdot 337 $
            cannopt be expressed as $w^2 - 2 v^2$ in integers.



            jagy@phobeusjunior:~$ ./mse
            x: -1 y: -1 z: 2 = 2
            x: -1 y: 0 z: 2 = 2
            x: -1 y: 1 z: 2 = 2
            x: 1 y: -1 z: 2 = 2
            x: 1 y: 0 z: 2 = 2
            x: 1 y: 1 z: 2 = 2
            x: -7 y: -1 z: 10 = 2 5
            x: -7 y: 0 z: 10 = 2 5
            x: -7 y: 1 z: 10 = 2 5
            x: 7 y: -1 z: 10 = 2 5
            x: 7 y: 0 z: 10 = 2 5
            x: 7 y: 1 z: 10 = 2 5
            x: -41 y: -1 z: 58 = 2 29
            x: -41 y: 0 z: 58 = 2 29
            x: -41 y: 1 z: 58 = 2 29
            x: 41 y: -1 z: 58 = 2 29
            x: 41 y: 0 z: 58 = 2 29
            x: 41 y: 1 z: 58 = 2 29
            x: 89 y: 3 z: 470 = 2 5 47
            x: 119 y: 3 z: 550 = 2 5^2 11
            x: -239 y: -1 z: 338 = 2 13^2
            x: -239 y: 0 z: 338 = 2 13^2
            x: -239 y: 1 z: 338 = 2 13^2
            x: 239 y: -1 z: 338 = 2 13^2
            x: 239 y: 0 z: 338 = 2 13^2
            x: 239 y: 1 z: 338 = 2 13^2
            x: 329 y: 5 z: 4378 = 2 11 199
            x: 409 y: 3 z: 1130 = 2 5 113
            x: 479 y: 3 z: 1250 = 2 5^4
            x: 791 y: 5 z: 6842 = 2 11 311
            x: -1241 y: 3 z: 470 = 2 5 47
            x: -1271 y: 3 z: 550 = 2 5^2 11
            x: -1393 y: -1 z: 1970 = 2 5 197
            x: -1393 y: 0 z: 1970 = 2 5 197
            x: -1393 y: 1 z: 1970 = 2 5 197
            x: 1393 y: -1 z: 1970 = 2 5 197
            x: 1393 y: 0 z: 1970 = 2 5 197
            x: 1393 y: 1 z: 1970 = 2 5 197
            x: -1561 y: 3 z: 1130 = 2 5 113
            x: -1631 y: 3 z: 1250 = 2 5^4
            x: 2359 y: 3 z: 4070 = 2 5 11 37
            x: 2609 y: 3 z: 4430 = 2 5 443
            x: -3511 y: 3 z: 4070 = 2 5 11 37
            x: 3607 y: 5 z: 15290 = 2 5 11 139
            x: -3761 y: 3 z: 4430 = 2 5 443
            x: 4639 y: 3 z: 7330 = 2 5 733
            x: 4993 y: 5 z: 18370 = 2 5 11 167
            x: 5089 y: 3 z: 7970 = 2 5 797
            x: -5791 y: 3 z: 7330 = 2 5 733
            x: -6241 y: 3 z: 7970 = 2 5 797
            x: 7039 y: 5 z: 22462 = 2 11 1021
            x: -8119 y: -1 z: 11482 = 2 5741
            x: -8119 y: 0 z: 11482 = 2 5741
            x: -8119 y: 1 z: 11482 = 2 5741
            x: 8119 y: -1 z: 11482 = 2 5741
            x: 8119 y: 0 z: 11482 = 2 5741
            x: 8119 y: 1 z: 11482 = 2 5741
            x: 9041 y: 5 z: 26158 = 2 11 29 41
            x: 16369 y: 3 z: 23950 = 2 5^2 479
            x: 17489 y: 5 z: 40238 = 2 11 31 59
            x: -17521 y: 3 z: 23950 = 2 5^2 479
            x: 17839 y: 3 z: 26030 = 2 5 19 137
            x: -18991 y: 3 z: 26030 = 2 5 19 137






            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 28 at 3:07

























            answered Jan 28 at 1:34









            Will JagyWill Jagy

            104k5102201




            104k5102201























                1












                $begingroup$

                Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
                $$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
                There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
                $$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
                For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.



                jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
                Automorphism matrix:
                3 4
                2 3
                Automorphism backwards:
                3 -4
                -2 3

                3^2 - 2 2^2 = 1

                w^2 - 2 v^2 = 13271 = 23 577

                Sun Jan 27 18:25:45 PST 2019

                w: 133 v: 47 SEED KEEP +-
                w: 139 v: 55 SEED KEEP +-
                w: 197 v: 113 SEED BACK ONE STEP 139 , -55
                w: 211 v: 125 SEED BACK ONE STEP 133 , -47
                w: 587 v: 407
                w: 637 v: 443
                w: 1043 v: 733
                w: 1133 v: 797
                w: 3389 v: 2395
                w: 3683 v: 2603
                w: 6061 v: 4285
                w: 6587 v: 4657
                w: 19747 v: 13963
                w: 21461 v: 15175
                w: 35323 v: 24977
                w: 38389 v: 27145
                w: 115093 v: 81383
                w: 125083 v: 88447
                w: 205877 v: 145577
                w: 223747 v: 158213
                w: 670811 v: 474335
                w: 729037 v: 515507
                w: 1199939 v: 848485
                w: 1304093 v: 922133
                w: 3909773 v: 2764627
                w: 4249139 v: 3004595
                w: 6993757 v: 4945333
                w: 7600811 v: 5374585

                Sun Jan 27 18:26:11 PST 2019

                w^2 - 2 v^2 = 13271 = 23 577

                jagy@phobeusjunior:~$





                share|cite|improve this answer











                $endgroup$


















                  1












                  $begingroup$

                  Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
                  $$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
                  There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
                  $$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
                  For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.



                  jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
                  Automorphism matrix:
                  3 4
                  2 3
                  Automorphism backwards:
                  3 -4
                  -2 3

                  3^2 - 2 2^2 = 1

                  w^2 - 2 v^2 = 13271 = 23 577

                  Sun Jan 27 18:25:45 PST 2019

                  w: 133 v: 47 SEED KEEP +-
                  w: 139 v: 55 SEED KEEP +-
                  w: 197 v: 113 SEED BACK ONE STEP 139 , -55
                  w: 211 v: 125 SEED BACK ONE STEP 133 , -47
                  w: 587 v: 407
                  w: 637 v: 443
                  w: 1043 v: 733
                  w: 1133 v: 797
                  w: 3389 v: 2395
                  w: 3683 v: 2603
                  w: 6061 v: 4285
                  w: 6587 v: 4657
                  w: 19747 v: 13963
                  w: 21461 v: 15175
                  w: 35323 v: 24977
                  w: 38389 v: 27145
                  w: 115093 v: 81383
                  w: 125083 v: 88447
                  w: 205877 v: 145577
                  w: 223747 v: 158213
                  w: 670811 v: 474335
                  w: 729037 v: 515507
                  w: 1199939 v: 848485
                  w: 1304093 v: 922133
                  w: 3909773 v: 2764627
                  w: 4249139 v: 3004595
                  w: 6993757 v: 4945333
                  w: 7600811 v: 5374585

                  Sun Jan 27 18:26:11 PST 2019

                  w^2 - 2 v^2 = 13271 = 23 577

                  jagy@phobeusjunior:~$





                  share|cite|improve this answer











                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
                    $$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
                    There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
                    $$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
                    For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.



                    jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
                    Automorphism matrix:
                    3 4
                    2 3
                    Automorphism backwards:
                    3 -4
                    -2 3

                    3^2 - 2 2^2 = 1

                    w^2 - 2 v^2 = 13271 = 23 577

                    Sun Jan 27 18:25:45 PST 2019

                    w: 133 v: 47 SEED KEEP +-
                    w: 139 v: 55 SEED KEEP +-
                    w: 197 v: 113 SEED BACK ONE STEP 139 , -55
                    w: 211 v: 125 SEED BACK ONE STEP 133 , -47
                    w: 587 v: 407
                    w: 637 v: 443
                    w: 1043 v: 733
                    w: 1133 v: 797
                    w: 3389 v: 2395
                    w: 3683 v: 2603
                    w: 6061 v: 4285
                    w: 6587 v: 4657
                    w: 19747 v: 13963
                    w: 21461 v: 15175
                    w: 35323 v: 24977
                    w: 38389 v: 27145
                    w: 115093 v: 81383
                    w: 125083 v: 88447
                    w: 205877 v: 145577
                    w: 223747 v: 158213
                    w: 670811 v: 474335
                    w: 729037 v: 515507
                    w: 1199939 v: 848485
                    w: 1304093 v: 922133
                    w: 3909773 v: 2764627
                    w: 4249139 v: 3004595
                    w: 6993757 v: 4945333
                    w: 7600811 v: 5374585

                    Sun Jan 27 18:26:11 PST 2019

                    w^2 - 2 v^2 = 13271 = 23 577

                    jagy@phobeusjunior:~$





                    share|cite|improve this answer











                    $endgroup$



                    Alright, that works pretty well. For example, when $y = 3,$ and taking $z = 2t,$ we wind up solving the Pell type
                    $$ (x+576)^2 - 2 t^2 = 577 cdot 23 cdot 5^2 $$
                    There are always details: both $x+576$ and $t$ must be divisible by $5,$ so that
                    $$ x+576 = 5 w, ; t = 5 v, ; w^2 - 2 v^2 = 577 cdot 23 = 13271 $$
                    For each $w$ in the output below, we get two $x$ values from $pm w,$ namely $5w-576$ and $-5w-576.$ The degree two recursion for $x$ is a mess, but we get less trouble with $u,t$ and therefore $z.$ Still intricate.



                    jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
                    Automorphism matrix:
                    3 4
                    2 3
                    Automorphism backwards:
                    3 -4
                    -2 3

                    3^2 - 2 2^2 = 1

                    w^2 - 2 v^2 = 13271 = 23 577

                    Sun Jan 27 18:25:45 PST 2019

                    w: 133 v: 47 SEED KEEP +-
                    w: 139 v: 55 SEED KEEP +-
                    w: 197 v: 113 SEED BACK ONE STEP 139 , -55
                    w: 211 v: 125 SEED BACK ONE STEP 133 , -47
                    w: 587 v: 407
                    w: 637 v: 443
                    w: 1043 v: 733
                    w: 1133 v: 797
                    w: 3389 v: 2395
                    w: 3683 v: 2603
                    w: 6061 v: 4285
                    w: 6587 v: 4657
                    w: 19747 v: 13963
                    w: 21461 v: 15175
                    w: 35323 v: 24977
                    w: 38389 v: 27145
                    w: 115093 v: 81383
                    w: 125083 v: 88447
                    w: 205877 v: 145577
                    w: 223747 v: 158213
                    w: 670811 v: 474335
                    w: 729037 v: 515507
                    w: 1199939 v: 848485
                    w: 1304093 v: 922133
                    w: 3909773 v: 2764627
                    w: 4249139 v: 3004595
                    w: 6993757 v: 4945333
                    w: 7600811 v: 5374585

                    Sun Jan 27 18:26:11 PST 2019

                    w^2 - 2 v^2 = 13271 = 23 577

                    jagy@phobeusjunior:~$






                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 28 at 2:32

























                    answered Jan 28 at 2:24









                    Will JagyWill Jagy

                    104k5102201




                    104k5102201























                        1












                        $begingroup$

                        jagy@phobeusjunior:~$ ./mse
                        x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
                        x: 15226951 y: 40 z: 499630198 = 2 607 411557
                        x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
                        x: 35790119 y: 40 z: 766951382 = 2 383475691
                        x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
                        x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023








                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          jagy@phobeusjunior:~$ ./mse
                          x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
                          x: 15226951 y: 40 z: 499630198 = 2 607 411557
                          x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
                          x: 35790119 y: 40 z: 766951382 = 2 383475691
                          x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
                          x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023








                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            jagy@phobeusjunior:~$ ./mse
                            x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
                            x: 15226951 y: 40 z: 499630198 = 2 607 411557
                            x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
                            x: 35790119 y: 40 z: 766951382 = 2 383475691
                            x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
                            x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023








                            share|cite|improve this answer









                            $endgroup$



                            jagy@phobeusjunior:~$ ./mse
                            x: 1883191 y: 40 z: 175564058 = 2 59 101 14731
                            x: 15226951 y: 40 z: 499630198 = 2 607 411557
                            x: 28177657 y: 40 z: 680201290 = 2 5 223 305023
                            x: 35790119 y: 40 z: 766951382 = 2 383475691
                            x: 61524257 y: 40 z: 1007136670 = 2 5 37 127 21433
                            x: 72580159 y: 40 z: 1094624642 = 2 41 47 284023









                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 28 at 3:36









                            Will JagyWill Jagy

                            104k5102201




                            104k5102201






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090286%2frational-solutions-of-21x24xy-y32-z2%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                Npm cannot find a required file even through it is in the searched directory