Semiparametric model with finite-dimensional nuisance parameters
$begingroup$
The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
begin{equation}
mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
end{equation}
where $l in mathcal{L}$ is a nuisance function.
Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and
- let
begin{equation}
mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space. - let
begin{equation}
mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.
let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.
I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.
I followed this procedure:
1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
begin{equation}
bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
end{equation}
2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
left( begin{array}{cc}
F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
end{array}right) ,
end{equation}
3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
end{equation}
Is it correct?
probability probability-theory statistics probability-distributions statistical-inference
$endgroup$
add a comment |
$begingroup$
The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
begin{equation}
mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
end{equation}
where $l in mathcal{L}$ is a nuisance function.
Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and
- let
begin{equation}
mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space. - let
begin{equation}
mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.
let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.
I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.
I followed this procedure:
1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
begin{equation}
bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
end{equation}
2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
left( begin{array}{cc}
F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
end{array}right) ,
end{equation}
3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
end{equation}
Is it correct?
probability probability-theory statistics probability-distributions statistical-inference
$endgroup$
add a comment |
$begingroup$
The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
begin{equation}
mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
end{equation}
where $l in mathcal{L}$ is a nuisance function.
Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and
- let
begin{equation}
mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space. - let
begin{equation}
mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.
let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.
I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.
I followed this procedure:
1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
begin{equation}
bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
end{equation}
2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
left( begin{array}{cc}
F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
end{array}right) ,
end{equation}
3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
end{equation}
Is it correct?
probability probability-theory statistics probability-distributions statistical-inference
$endgroup$
The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
begin{equation}
mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
end{equation}
where $l in mathcal{L}$ is a nuisance function.
Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and
- let
begin{equation}
mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space. - let
begin{equation}
mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
end{equation}
be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.
let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.
I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.
I followed this procedure:
1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
begin{equation}
bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
end{equation}
2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
left( begin{array}{cc}
F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
end{array}right) ,
end{equation}
3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
end{equation}
Is it correct?
probability probability-theory statistics probability-distributions statistical-inference
probability probability-theory statistics probability-distributions statistical-inference
edited Jan 28 at 13:40
Vuk
asked Jan 28 at 13:17
VukVuk
768
768
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090840%2fsemiparametric-model-with-finite-dimensional-nuisance-parameters%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090840%2fsemiparametric-model-with-finite-dimensional-nuisance-parameters%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown