Semiparametric model with finite-dimensional nuisance parameters












0












$begingroup$


The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
begin{equation}
mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
end{equation}

where $l in mathcal{L}$ is a nuisance function.
Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and




  • let
    begin{equation}
    mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
    end{equation}

    be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space.

  • let
    begin{equation}
    mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
    end{equation}

    be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.


  • let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.



    I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.




I followed this procedure:



1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
begin{equation}
bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
end{equation}

2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
left( begin{array}{cc}
F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
end{array}right) ,
end{equation}

3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
begin{equation}
overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
end{equation}



Is it correct?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
    begin{equation}
    mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
    end{equation}

    where $l in mathcal{L}$ is a nuisance function.
    Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and




    • let
      begin{equation}
      mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
      end{equation}

      be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space.

    • let
      begin{equation}
      mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
      end{equation}

      be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.


    • let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.



      I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.




    I followed this procedure:



    1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
    evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
    begin{equation}
    bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
    end{equation}

    2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
    begin{equation}
    overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
    left( begin{array}{cc}
    F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
    F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
    end{array}right) ,
    end{equation}

    3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
    begin{equation}
    overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
    end{equation}



    Is it correct?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
      begin{equation}
      mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
      end{equation}

      where $l in mathcal{L}$ is a nuisance function.
      Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and




      • let
        begin{equation}
        mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
        end{equation}

        be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space.

      • let
        begin{equation}
        mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
        end{equation}

        be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.


      • let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.



        I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.




      I followed this procedure:



      1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
      evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
      begin{equation}
      bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
      end{equation}

      2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
      begin{equation}
      overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
      left( begin{array}{cc}
      F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
      F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
      end{array}right) ,
      end{equation}

      3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
      begin{equation}
      overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
      end{equation}



      Is it correct?










      share|cite|improve this question











      $endgroup$




      The finite-dimensional parameter vector $boldsymbol{gamma} in mathbb{R}^q$ is partitioned in two sub-vectors, i.e. $boldsymbol{gamma} = (boldsymbol{phi}^T,boldsymbol{zeta}^T)^T in Psi times Xi subseteqmathbb{R}^n times mathbb{R}^k$ with $n+k=q$. In particular, $boldsymbol{phi}$ represents the sub-vector of the parameters of interest, while $boldsymbol{zeta}$ is the sub-vector of the finite-dimensional nuisance parameters. Let us define a semi-parametric model as follows:
      begin{equation}
      mathcal{P}_{boldsymbol{phi},boldsymbol{zeta},l} triangleq leftlbrace p_X | p_X(mathbf{x}|boldsymbol{phi},boldsymbol{zeta},l), boldsymbol{phi} in Psi, boldsymbol{zeta} in Xi, l in mathcal{L} rightrbrace ,
      end{equation}

      where $l in mathcal{L}$ is a nuisance function.
      Let $p_0(mathbf{x})=p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)$ be the true pdf and




      • let
        begin{equation}
        mathbf{s}_{boldsymbol{phi}_0}(mathbf{x})=nabla_{boldsymbol{phi}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
        end{equation}

        be the score vector of the vector of the parameters of interest. We indicate with $mathcal{T}_{boldsymbol{phi}_0}$ the relative tangent space.

      • let
        begin{equation}
        mathbf{s}_{boldsymbol{zeta}_0}(mathbf{x})=nabla_{boldsymbol{zeta}}ln p_X(mathbf{x}|boldsymbol{phi}_0,boldsymbol{zeta}_0,l_0)
        end{equation}

        be the score vector of the finite-dimensional nuisance parameters. We indicate with $mathcal{T}_{boldsymbol{zeta}_0}$ the relative tangent space.


      • let $mathcal{T}_{l_0}$ the semiparametric nuisance tangent space.



        I need to find the inverse of the efficient Fisher Information Matrix (FIM) for $boldsymbol{phi}_0$, i.e. $overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1}$.




      I followed this procedure:



      1) By indicating with $mathbf{s}_{boldsymbol{gamma}_0} = [mathbf{s}_{boldsymbol{phi}_0}^T, ; mathbf{s}_{boldsymbol{zeta}_0}^T]^T$,
      evaluate the efficient score vector for $boldsymbol{gamma}_0$ as:
      begin{equation}
      bar{mathbf{s}}_{boldsymbol{gamma}_0}(mathbf{x}) = mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x}) - Pi(mathbf{s}_{boldsymbol{gamma}_0}(mathbf{x})|mathcal{T}_{l_0}).
      end{equation}

      2) Then, obtain the efficient FIM for $boldsymbol{gamma}_0$ as:
      begin{equation}
      overline{mathrm{FIM}}(boldsymbol{gamma}_0) = E_0{bar{mathbf{s}}_{boldsymbol{gamma}_0}bar{mathbf{s}}_{boldsymbol{gamma}_0}^T} triangleq
      left( begin{array}{cc}
      F_{boldsymbol{phi}boldsymbol{phi}} & F_{boldsymbol{phi}boldsymbol{zeta}}\
      F_{boldsymbol{zeta}boldsymbol{phi}} & F_{boldsymbol{zeta}boldsymbol{zeta}}
      end{array}right) ,
      end{equation}

      3) Use the Woodbury matrix identity to evaluate the inverse of the $n times n$ top-left sub-matrix of $overline{mathrm{FIM}}(boldsymbol{gamma}_0)$ as:
      begin{equation}
      overline{mathrm{FIM}}(boldsymbol{phi}_0)^{-1} = (F_{boldsymbol{phi}boldsymbol{phi}} - F_{boldsymbol{phi}boldsymbol{zeta}}F_{boldsymbol{zeta}boldsymbol{zeta}}^{-1}F_{boldsymbol{zeta}boldsymbol{phi}}^T)^{-1}.
      end{equation}



      Is it correct?







      probability probability-theory statistics probability-distributions statistical-inference






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 28 at 13:40







      Vuk

















      asked Jan 28 at 13:17









      VukVuk

      768




      768






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090840%2fsemiparametric-model-with-finite-dimensional-nuisance-parameters%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090840%2fsemiparametric-model-with-finite-dimensional-nuisance-parameters%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          Npm cannot find a required file even through it is in the searched directory