Show that the line with parametric equations don't intersect
$begingroup$
Show that the line with parametric equations $x = 6 + 8t$, $y = −5 + t$, $z = 2 + 3t$ does not intersect the plane with equation $2x − y − 5z − 2 = 0$.
To answer this do i just plug in the $x$, $y$, and $z$ equation into $2x − y − 5z − 2 = 0$? So $2(6 + 8t) − y − 5(−5 + t) − 2(2 + 3t) = 0 $
calculus multivariable-calculus parametric
$endgroup$
add a comment |
$begingroup$
Show that the line with parametric equations $x = 6 + 8t$, $y = −5 + t$, $z = 2 + 3t$ does not intersect the plane with equation $2x − y − 5z − 2 = 0$.
To answer this do i just plug in the $x$, $y$, and $z$ equation into $2x − y − 5z − 2 = 0$? So $2(6 + 8t) − y − 5(−5 + t) − 2(2 + 3t) = 0 $
calculus multivariable-calculus parametric
$endgroup$
$begingroup$
Yes, except your substitution is incorrect; you should get $$2(6+8t)-(-5+t)-5(2+3t)-2=0.$$
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:38
$begingroup$
I get the solution 0t=5. Does that mean there is no intersection?
$endgroup$
– Kimmy.J
Mar 26 '16 at 23:42
$begingroup$
Yes; there's no value of $t$ that makes it true.
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:42
add a comment |
$begingroup$
Show that the line with parametric equations $x = 6 + 8t$, $y = −5 + t$, $z = 2 + 3t$ does not intersect the plane with equation $2x − y − 5z − 2 = 0$.
To answer this do i just plug in the $x$, $y$, and $z$ equation into $2x − y − 5z − 2 = 0$? So $2(6 + 8t) − y − 5(−5 + t) − 2(2 + 3t) = 0 $
calculus multivariable-calculus parametric
$endgroup$
Show that the line with parametric equations $x = 6 + 8t$, $y = −5 + t$, $z = 2 + 3t$ does not intersect the plane with equation $2x − y − 5z − 2 = 0$.
To answer this do i just plug in the $x$, $y$, and $z$ equation into $2x − y − 5z − 2 = 0$? So $2(6 + 8t) − y − 5(−5 + t) − 2(2 + 3t) = 0 $
calculus multivariable-calculus parametric
calculus multivariable-calculus parametric
edited Mar 26 '16 at 23:38
Christopher Carl Heckman
3,9271020
3,9271020
asked Mar 26 '16 at 23:36
Kimmy.JKimmy.J
487
487
$begingroup$
Yes, except your substitution is incorrect; you should get $$2(6+8t)-(-5+t)-5(2+3t)-2=0.$$
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:38
$begingroup$
I get the solution 0t=5. Does that mean there is no intersection?
$endgroup$
– Kimmy.J
Mar 26 '16 at 23:42
$begingroup$
Yes; there's no value of $t$ that makes it true.
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:42
add a comment |
$begingroup$
Yes, except your substitution is incorrect; you should get $$2(6+8t)-(-5+t)-5(2+3t)-2=0.$$
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:38
$begingroup$
I get the solution 0t=5. Does that mean there is no intersection?
$endgroup$
– Kimmy.J
Mar 26 '16 at 23:42
$begingroup$
Yes; there's no value of $t$ that makes it true.
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:42
$begingroup$
Yes, except your substitution is incorrect; you should get $$2(6+8t)-(-5+t)-5(2+3t)-2=0.$$
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:38
$begingroup$
Yes, except your substitution is incorrect; you should get $$2(6+8t)-(-5+t)-5(2+3t)-2=0.$$
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:38
$begingroup$
I get the solution 0t=5. Does that mean there is no intersection?
$endgroup$
– Kimmy.J
Mar 26 '16 at 23:42
$begingroup$
I get the solution 0t=5. Does that mean there is no intersection?
$endgroup$
– Kimmy.J
Mar 26 '16 at 23:42
$begingroup$
Yes; there's no value of $t$ that makes it true.
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:42
$begingroup$
Yes; there's no value of $t$ that makes it true.
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$2(6+8t)−(−5+t)−5(2+3t)−2=0$
$0t=5$
Therefore, there is no intersection.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1714958%2fshow-that-the-line-with-parametric-equations-dont-intersect%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$2(6+8t)−(−5+t)−5(2+3t)−2=0$
$0t=5$
Therefore, there is no intersection.
$endgroup$
add a comment |
$begingroup$
$2(6+8t)−(−5+t)−5(2+3t)−2=0$
$0t=5$
Therefore, there is no intersection.
$endgroup$
add a comment |
$begingroup$
$2(6+8t)−(−5+t)−5(2+3t)−2=0$
$0t=5$
Therefore, there is no intersection.
$endgroup$
$2(6+8t)−(−5+t)−5(2+3t)−2=0$
$0t=5$
Therefore, there is no intersection.
edited Apr 17 '16 at 22:40
Yeah..
262115
262115
answered Mar 26 '16 at 23:45
Kimmy.JKimmy.J
487
487
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1714958%2fshow-that-the-line-with-parametric-equations-dont-intersect%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Yes, except your substitution is incorrect; you should get $$2(6+8t)-(-5+t)-5(2+3t)-2=0.$$
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:38
$begingroup$
I get the solution 0t=5. Does that mean there is no intersection?
$endgroup$
– Kimmy.J
Mar 26 '16 at 23:42
$begingroup$
Yes; there's no value of $t$ that makes it true.
$endgroup$
– Christopher Carl Heckman
Mar 26 '16 at 23:42