show that $X_n overset{mathrm{P}}{to} X iff d(X_n,X) to 0 $
$begingroup$
let $L^0$ be the space on all random variables then :
$$begin{align}
d : &L^0 times L^0 &to &[0,1] \
&(X,Y) &mapsto &mathbb{E}[frac{|X-Y|}{1+|X - Y|}]
end{align}$$
defines a well defined metric on $L^0$
proof of first implication : considering the continuous bounded function $phi(t) = frac{|t|}{1+|t|}$ and using the fact that $E[phi(X_n-X)] to 0$ in case $X_n -X overset{mathrm{d}}{to} 0$
then $$X_n overset{mathrm{P}}{to} X implies X_n - X overset{mathrm{P}}{to} 0 implies X_n - X overset{mathrm{d}}{to} 0 implies d(X_n,X) to 0 $$
for second I wanted to use the fact that the convergence in $L^1$ is preserved under composition with continuous function coupled with the fact that $$frac{frac{t}{1 + t}}{1 -frac{t}{1 + t}} = t$$
but $y mapsto frac{y}{1-y}$ isn't continuous at $1$.
hints ?
probability-theory convergence metric-spaces
$endgroup$
add a comment |
$begingroup$
let $L^0$ be the space on all random variables then :
$$begin{align}
d : &L^0 times L^0 &to &[0,1] \
&(X,Y) &mapsto &mathbb{E}[frac{|X-Y|}{1+|X - Y|}]
end{align}$$
defines a well defined metric on $L^0$
proof of first implication : considering the continuous bounded function $phi(t) = frac{|t|}{1+|t|}$ and using the fact that $E[phi(X_n-X)] to 0$ in case $X_n -X overset{mathrm{d}}{to} 0$
then $$X_n overset{mathrm{P}}{to} X implies X_n - X overset{mathrm{P}}{to} 0 implies X_n - X overset{mathrm{d}}{to} 0 implies d(X_n,X) to 0 $$
for second I wanted to use the fact that the convergence in $L^1$ is preserved under composition with continuous function coupled with the fact that $$frac{frac{t}{1 + t}}{1 -frac{t}{1 + t}} = t$$
but $y mapsto frac{y}{1-y}$ isn't continuous at $1$.
hints ?
probability-theory convergence metric-spaces
$endgroup$
add a comment |
$begingroup$
let $L^0$ be the space on all random variables then :
$$begin{align}
d : &L^0 times L^0 &to &[0,1] \
&(X,Y) &mapsto &mathbb{E}[frac{|X-Y|}{1+|X - Y|}]
end{align}$$
defines a well defined metric on $L^0$
proof of first implication : considering the continuous bounded function $phi(t) = frac{|t|}{1+|t|}$ and using the fact that $E[phi(X_n-X)] to 0$ in case $X_n -X overset{mathrm{d}}{to} 0$
then $$X_n overset{mathrm{P}}{to} X implies X_n - X overset{mathrm{P}}{to} 0 implies X_n - X overset{mathrm{d}}{to} 0 implies d(X_n,X) to 0 $$
for second I wanted to use the fact that the convergence in $L^1$ is preserved under composition with continuous function coupled with the fact that $$frac{frac{t}{1 + t}}{1 -frac{t}{1 + t}} = t$$
but $y mapsto frac{y}{1-y}$ isn't continuous at $1$.
hints ?
probability-theory convergence metric-spaces
$endgroup$
let $L^0$ be the space on all random variables then :
$$begin{align}
d : &L^0 times L^0 &to &[0,1] \
&(X,Y) &mapsto &mathbb{E}[frac{|X-Y|}{1+|X - Y|}]
end{align}$$
defines a well defined metric on $L^0$
proof of first implication : considering the continuous bounded function $phi(t) = frac{|t|}{1+|t|}$ and using the fact that $E[phi(X_n-X)] to 0$ in case $X_n -X overset{mathrm{d}}{to} 0$
then $$X_n overset{mathrm{P}}{to} X implies X_n - X overset{mathrm{P}}{to} 0 implies X_n - X overset{mathrm{d}}{to} 0 implies d(X_n,X) to 0 $$
for second I wanted to use the fact that the convergence in $L^1$ is preserved under composition with continuous function coupled with the fact that $$frac{frac{t}{1 + t}}{1 -frac{t}{1 + t}} = t$$
but $y mapsto frac{y}{1-y}$ isn't continuous at $1$.
hints ?
probability-theory convergence metric-spaces
probability-theory convergence metric-spaces
asked Jan 25 at 14:45


rapidracimrapidracim
1,7241419
1,7241419
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $tmapsto frac{t}{1+t}$ is increasing, we find by Chebyshev's inequality
$$
Bbb P(|X_n-X|geepsilon) =Bbb Pleft(frac{|X_n-X|}{1+|X_n-X|}ge frac{epsilon}{1+epsilon}right)le (1+epsilon)/epsiloncdot d(X_n,X) to 0.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087169%2fshow-that-x-n-overset-mathrmp-to-x-iff-dx-n-x-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $tmapsto frac{t}{1+t}$ is increasing, we find by Chebyshev's inequality
$$
Bbb P(|X_n-X|geepsilon) =Bbb Pleft(frac{|X_n-X|}{1+|X_n-X|}ge frac{epsilon}{1+epsilon}right)le (1+epsilon)/epsiloncdot d(X_n,X) to 0.
$$
$endgroup$
add a comment |
$begingroup$
Since $tmapsto frac{t}{1+t}$ is increasing, we find by Chebyshev's inequality
$$
Bbb P(|X_n-X|geepsilon) =Bbb Pleft(frac{|X_n-X|}{1+|X_n-X|}ge frac{epsilon}{1+epsilon}right)le (1+epsilon)/epsiloncdot d(X_n,X) to 0.
$$
$endgroup$
add a comment |
$begingroup$
Since $tmapsto frac{t}{1+t}$ is increasing, we find by Chebyshev's inequality
$$
Bbb P(|X_n-X|geepsilon) =Bbb Pleft(frac{|X_n-X|}{1+|X_n-X|}ge frac{epsilon}{1+epsilon}right)le (1+epsilon)/epsiloncdot d(X_n,X) to 0.
$$
$endgroup$
Since $tmapsto frac{t}{1+t}$ is increasing, we find by Chebyshev's inequality
$$
Bbb P(|X_n-X|geepsilon) =Bbb Pleft(frac{|X_n-X|}{1+|X_n-X|}ge frac{epsilon}{1+epsilon}right)le (1+epsilon)/epsiloncdot d(X_n,X) to 0.
$$
answered Jan 25 at 15:11


SongSong
18.3k21549
18.3k21549
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087169%2fshow-that-x-n-overset-mathrmp-to-x-iff-dx-n-x-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown