Solve $frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$












2












$begingroup$


Solve the differential equation



Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$



My try:



I used $x=y tan z$



$$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$



So we get:



$$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$



Any clue from here?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Solve the differential equation



    Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$



    My try:



    I used $x=y tan z$



    $$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$



    So we get:



    $$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$



    Any clue from here?










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      2



      $begingroup$


      Solve the differential equation



      Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$



      My try:



      I used $x=y tan z$



      $$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$



      So we get:



      $$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$



      Any clue from here?










      share|cite|improve this question









      $endgroup$




      Solve the differential equation



      Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$



      My try:



      I used $x=y tan z$



      $$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$



      So we get:



      $$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$



      Any clue from here?







      ordinary-differential-equations derivatives trigonometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 13:09









      Umesh shankarUmesh shankar

      3,07931220




      3,07931220






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Hint:



          Let $x=yu$ ,



          Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$



          $therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$



          $ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$



          $ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$



          $left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$



          This belongs to an Abel equation of the second kind.



          Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,



          Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$



          $dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$



          $therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Very nice but still i have no clue to proceed from the last step.
            $endgroup$
            – Umesh shankar
            Jan 31 at 14:45












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090832%2fsolve-fracdxdy-fracx-sqrtx2y2-y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Hint:



          Let $x=yu$ ,



          Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$



          $therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$



          $ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$



          $ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$



          $left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$



          This belongs to an Abel equation of the second kind.



          Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,



          Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$



          $dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$



          $therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Very nice but still i have no clue to proceed from the last step.
            $endgroup$
            – Umesh shankar
            Jan 31 at 14:45
















          2












          $begingroup$

          Hint:



          Let $x=yu$ ,



          Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$



          $therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$



          $ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$



          $ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$



          $left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$



          This belongs to an Abel equation of the second kind.



          Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,



          Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$



          $dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$



          $therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Very nice but still i have no clue to proceed from the last step.
            $endgroup$
            – Umesh shankar
            Jan 31 at 14:45














          2












          2








          2





          $begingroup$

          Hint:



          Let $x=yu$ ,



          Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$



          $therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$



          $ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$



          $ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$



          $left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$



          This belongs to an Abel equation of the second kind.



          Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,



          Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$



          $dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$



          $therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$






          share|cite|improve this answer









          $endgroup$



          Hint:



          Let $x=yu$ ,



          Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$



          $therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$



          $ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$



          $ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$



          $left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$



          This belongs to an Abel equation of the second kind.



          Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,



          Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$



          $dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$



          $therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$



          $vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 31 at 12:12









          doraemonpauldoraemonpaul

          12.8k31661




          12.8k31661












          • $begingroup$
            Very nice but still i have no clue to proceed from the last step.
            $endgroup$
            – Umesh shankar
            Jan 31 at 14:45


















          • $begingroup$
            Very nice but still i have no clue to proceed from the last step.
            $endgroup$
            – Umesh shankar
            Jan 31 at 14:45
















          $begingroup$
          Very nice but still i have no clue to proceed from the last step.
          $endgroup$
          – Umesh shankar
          Jan 31 at 14:45




          $begingroup$
          Very nice but still i have no clue to proceed from the last step.
          $endgroup$
          – Umesh shankar
          Jan 31 at 14:45


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090832%2fsolve-fracdxdy-fracx-sqrtx2y2-y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith