Solve $frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$
$begingroup$
Solve the differential equation
Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$
My try:
I used $x=y tan z$
$$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$
So we get:
$$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$
Any clue from here?
ordinary-differential-equations derivatives trigonometry
$endgroup$
add a comment |
$begingroup$
Solve the differential equation
Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$
My try:
I used $x=y tan z$
$$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$
So we get:
$$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$
Any clue from here?
ordinary-differential-equations derivatives trigonometry
$endgroup$
add a comment |
$begingroup$
Solve the differential equation
Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$
My try:
I used $x=y tan z$
$$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$
So we get:
$$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$
Any clue from here?
ordinary-differential-equations derivatives trigonometry
$endgroup$
Solve the differential equation
Solve $$frac{dx}{dy}+frac{x}{sqrt{x^2+y^2}}=y$$
My try:
I used $x=y tan z$
$$frac{dx}{dy}=tan z+sec^2 zfrac{dz}{dy}$$
So we get:
$$tan z+sec^2 zfrac{dz}{dy}+sin z=y$$
Any clue from here?
ordinary-differential-equations derivatives trigonometry
ordinary-differential-equations derivatives trigonometry
asked Jan 28 at 13:09
Umesh shankarUmesh shankar
3,07931220
3,07931220
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
Let $x=yu$ ,
Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$
$therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$
$ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$
$ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$
$left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$
This belongs to an Abel equation of the second kind.
Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,
Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$
$dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$
$therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$
$endgroup$
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090832%2fsolve-fracdxdy-fracx-sqrtx2y2-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Let $x=yu$ ,
Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$
$therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$
$ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$
$ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$
$left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$
This belongs to an Abel equation of the second kind.
Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,
Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$
$dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$
$therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$
$endgroup$
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
add a comment |
$begingroup$
Hint:
Let $x=yu$ ,
Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$
$therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$
$ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$
$ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$
$left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$
This belongs to an Abel equation of the second kind.
Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,
Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$
$dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$
$therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$
$endgroup$
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
add a comment |
$begingroup$
Hint:
Let $x=yu$ ,
Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$
$therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$
$ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$
$ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$
$left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$
This belongs to an Abel equation of the second kind.
Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,
Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$
$dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$
$therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$
$endgroup$
Hint:
Let $x=yu$ ,
Then $dfrac{dx}{dy}=ydfrac{du}{dy}+u$
$therefore ydfrac{du}{dy}+u+dfrac{yu}{sqrt{y^2u^2+y^2}}=y$
$ydfrac{du}{dy}+u+dfrac{u}{sqrt{u^2+1}}=y$
$ydfrac{du}{dy}=y-u-dfrac{u}{sqrt{u^2+1}}$
$left(y-u-dfrac{u}{sqrt{u^2+1}}right)dfrac{dy}{du}=y$
This belongs to an Abel equation of the second kind.
Let $v=y-u-dfrac{u}{sqrt{u^2+1}}$ ,
Then $y=v+u+dfrac{u}{sqrt{u^2+1}}$
$dfrac{dy}{du}=dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}$
$therefore vleft(dfrac{dv}{du}+1+dfrac{1}{(u^2+1)^frac{3}{2}}right)=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}+left(1+dfrac{1}{(u^2+1)^frac{3}{2}}right)v=v+u+dfrac{u}{sqrt{u^2+1}}$
$vdfrac{dv}{du}=-dfrac{v}{(u^2+1)^frac{3}{2}}+u+dfrac{u}{sqrt{u^2+1}}$
answered Jan 31 at 12:12
doraemonpauldoraemonpaul
12.8k31661
12.8k31661
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
add a comment |
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
$begingroup$
Very nice but still i have no clue to proceed from the last step.
$endgroup$
– Umesh shankar
Jan 31 at 14:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090832%2fsolve-fracdxdy-fracx-sqrtx2y2-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown