$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$












6












$begingroup$


$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$



We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $



I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.



Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$



Similarly here :



$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$



The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
    $endgroup$
    – Claude Leibovici
    Jan 28 at 9:48






  • 1




    $begingroup$
    If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
    $endgroup$
    – Euler....IS_ALIVE
    Jan 28 at 9:49
















6












$begingroup$


$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$



We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $



I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.



Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$



Similarly here :



$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$



The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
    $endgroup$
    – Claude Leibovici
    Jan 28 at 9:48






  • 1




    $begingroup$
    If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
    $endgroup$
    – Euler....IS_ALIVE
    Jan 28 at 9:49














6












6








6


1



$begingroup$


$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$



We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $



I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.



Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$



Similarly here :



$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$



The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.










share|cite|improve this question











$endgroup$




$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$



We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $



I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.



Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$



Similarly here :



$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$



The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.







calculus sequences-and-series trigonometry telescopic-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 11 at 10:01









lab bhattacharjee

228k15158278




228k15158278










asked Jan 28 at 9:01









SADBOYSSADBOYS

51119




51119








  • 1




    $begingroup$
    Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
    $endgroup$
    – Claude Leibovici
    Jan 28 at 9:48






  • 1




    $begingroup$
    If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
    $endgroup$
    – Euler....IS_ALIVE
    Jan 28 at 9:49














  • 1




    $begingroup$
    Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
    $endgroup$
    – Claude Leibovici
    Jan 28 at 9:48






  • 1




    $begingroup$
    If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
    $endgroup$
    – Euler....IS_ALIVE
    Jan 28 at 9:49








1




1




$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48




$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48




1




1




$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49




$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49










2 Answers
2






active

oldest

votes


















8












$begingroup$

Hint:



$$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$



For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
    $endgroup$
    – lab bhattacharjee
    Jan 28 at 11:58










  • $begingroup$
    Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
    $endgroup$
    – user
    Feb 19 at 12:27










  • $begingroup$
    @user, Where are $a,b$ in the current version ?
    $endgroup$
    – lab bhattacharjee
    Feb 19 at 12:53










  • $begingroup$
    @user, math.stackexchange.com/questions/3107476/…
    $endgroup$
    – lab bhattacharjee
    Feb 19 at 13:09










  • $begingroup$
    Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
    $endgroup$
    – user
    Feb 19 at 13:20



















1












$begingroup$

$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
{n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090636%2fsum-limits-n-1-infty-arctan-frac2n2n4%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    Hint:



    $$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$



    For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
      $endgroup$
      – lab bhattacharjee
      Jan 28 at 11:58










    • $begingroup$
      Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
      $endgroup$
      – user
      Feb 19 at 12:27










    • $begingroup$
      @user, Where are $a,b$ in the current version ?
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 12:53










    • $begingroup$
      @user, math.stackexchange.com/questions/3107476/…
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 13:09










    • $begingroup$
      Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
      $endgroup$
      – user
      Feb 19 at 13:20
















    8












    $begingroup$

    Hint:



    $$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$



    For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
      $endgroup$
      – lab bhattacharjee
      Jan 28 at 11:58










    • $begingroup$
      Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
      $endgroup$
      – user
      Feb 19 at 12:27










    • $begingroup$
      @user, Where are $a,b$ in the current version ?
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 12:53










    • $begingroup$
      @user, math.stackexchange.com/questions/3107476/…
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 13:09










    • $begingroup$
      Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
      $endgroup$
      – user
      Feb 19 at 13:20














    8












    8








    8





    $begingroup$

    Hint:



    $$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$



    For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$






    share|cite|improve this answer











    $endgroup$



    Hint:



    $$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$



    For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Feb 19 at 10:33

























    answered Jan 28 at 11:36









    lab bhattacharjeelab bhattacharjee

    228k15158278




    228k15158278








    • 1




      $begingroup$
      See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
      $endgroup$
      – lab bhattacharjee
      Jan 28 at 11:58










    • $begingroup$
      Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
      $endgroup$
      – user
      Feb 19 at 12:27










    • $begingroup$
      @user, Where are $a,b$ in the current version ?
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 12:53










    • $begingroup$
      @user, math.stackexchange.com/questions/3107476/…
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 13:09










    • $begingroup$
      Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
      $endgroup$
      – user
      Feb 19 at 13:20














    • 1




      $begingroup$
      See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
      $endgroup$
      – lab bhattacharjee
      Jan 28 at 11:58










    • $begingroup$
      Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
      $endgroup$
      – user
      Feb 19 at 12:27










    • $begingroup$
      @user, Where are $a,b$ in the current version ?
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 12:53










    • $begingroup$
      @user, math.stackexchange.com/questions/3107476/…
      $endgroup$
      – lab bhattacharjee
      Feb 19 at 13:09










    • $begingroup$
      Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
      $endgroup$
      – user
      Feb 19 at 13:20








    1




    1




    $begingroup$
    See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
    $endgroup$
    – lab bhattacharjee
    Jan 28 at 11:58




    $begingroup$
    See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
    $endgroup$
    – lab bhattacharjee
    Jan 28 at 11:58












    $begingroup$
    Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
    $endgroup$
    – user
    Feb 19 at 12:27




    $begingroup$
    Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
    $endgroup$
    – user
    Feb 19 at 12:27












    $begingroup$
    @user, Where are $a,b$ in the current version ?
    $endgroup$
    – lab bhattacharjee
    Feb 19 at 12:53




    $begingroup$
    @user, Where are $a,b$ in the current version ?
    $endgroup$
    – lab bhattacharjee
    Feb 19 at 12:53












    $begingroup$
    @user, math.stackexchange.com/questions/3107476/…
    $endgroup$
    – lab bhattacharjee
    Feb 19 at 13:09




    $begingroup$
    @user, math.stackexchange.com/questions/3107476/…
    $endgroup$
    – lab bhattacharjee
    Feb 19 at 13:09












    $begingroup$
    Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
    $endgroup$
    – user
    Feb 19 at 13:20




    $begingroup$
    Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
    $endgroup$
    – user
    Feb 19 at 13:20











    1












    $begingroup$

    $$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
    sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
    {n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
      sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
      {n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
        sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
        {n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$






        share|cite|improve this answer









        $endgroup$



        $$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
        sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
        {n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 28 at 11:41









        SADBOYSSADBOYS

        51119




        51119






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090636%2fsum-limits-n-1-infty-arctan-frac2n2n4%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith