$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$
We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $
I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.
Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$
Similarly here :
$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$
The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.
calculus sequences-and-series trigonometry telescopic-series
$endgroup$
add a comment |
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$
We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $
I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.
Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$
Similarly here :
$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$
The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.
calculus sequences-and-series trigonometry telescopic-series
$endgroup$
1
$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48
1
$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49
add a comment |
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$
We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $
I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.
Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$
Similarly here :
$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$
The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.
calculus sequences-and-series trigonometry telescopic-series
$endgroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}}$$
We know that : $arctan{x} - arctan{y} = arctan{frac{x-y}{1+xy}}$ for every $ xy > 1 $
I need to find two numbers which satisfy: $ab = n^2+2n+3 $ and $ a-b =2$ in order to telescope.
Edit: I am very sorry on the denominator it should have been $n^2+n+4$ not $n^2+2n+4$
Similarly here :
$$sumlimits_{n=1}^{infty}arctan{frac{8n}{n^4-2n^2+5}}$$
The result should be $ arctan 2 $ on the first one and $ pi/2 + arctan2 $ on the second one.
calculus sequences-and-series trigonometry telescopic-series
calculus sequences-and-series trigonometry telescopic-series
edited Feb 11 at 10:01
lab bhattacharjee
228k15158278
228k15158278
asked Jan 28 at 9:01


SADBOYSSADBOYS
51119
51119
1
$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48
1
$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49
add a comment |
1
$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48
1
$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49
1
1
$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48
$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48
1
1
$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49
$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
$$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$
For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$
$endgroup$
1
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
|
show 2 more comments
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
{n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090636%2fsum-limits-n-1-infty-arctan-frac2n2n4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$
For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$
$endgroup$
1
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
|
show 2 more comments
$begingroup$
Hint:
$$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$
For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$
$endgroup$
1
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
|
show 2 more comments
$begingroup$
Hint:
$$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$
For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$
$endgroup$
Hint:
$$dfrac2{n^2+n+4}=dfrac{dfrac12}{1+dfrac{n(n+1)}4}=dfrac{dfrac{n+1}2-dfrac n2}{1+dfrac n2cdotdfrac{n+1}2}$$
For the second, $$dfrac{8n}{n^4-2n^2+5}=dfrac{dfrac{(n+1)^2}2-dfrac{(n-1)^2}2}{dfrac{(n+1)^2}2cdotdfrac{(n-1)^2}2+1}$$
edited Feb 19 at 10:33
answered Jan 28 at 11:36
lab bhattacharjeelab bhattacharjee
228k15158278
228k15158278
1
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
|
show 2 more comments
1
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
1
1
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
See also: math.stackexchange.com/questions/193001/… math.stackexchange.com/questions/2789725/…
$endgroup$
– lab bhattacharjee
Jan 28 at 11:58
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
Can you explain in more details how the expressions for $a$ and $b$ in both cases were found?
$endgroup$
– user
Feb 19 at 12:27
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, Where are $a,b$ in the current version ?
$endgroup$
– lab bhattacharjee
Feb 19 at 12:53
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
@user, math.stackexchange.com/questions/3107476/…
$endgroup$
– lab bhattacharjee
Feb 19 at 13:09
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
$begingroup$
Thank you very much! Now I see. Do I understand correctly that in the second case you used $f(n)=arctan(an^2+bn+c)$ as a try function?
$endgroup$
– user
Feb 19 at 13:20
|
show 2 more comments
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
{n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$
$endgroup$
add a comment |
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
{n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$
$endgroup$
add a comment |
$begingroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
{n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$
$endgroup$
$$sumlimits_{n=1}^{infty}arctan{frac{2}{n^2+n+4}} = sumlimits_{n=1}^{infty}arctan{frac{2(n+1)-2n}{n(n+1)(1+frac{4}{n(n+1)})}} =
sumlimits_{n=1}^{infty}arctan{frac{frac{2}{n}-frac{2}{n+1}}{1+frac{2}
{n}cdotfrac{2}{n+1}}} =sumlimits_{n=1}^{infty}arctan{frac{2}{n}-arctan{frac{2}{n+1}}} =arctan2$$
answered Jan 28 at 11:41


SADBOYSSADBOYS
51119
51119
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090636%2fsum-limits-n-1-infty-arctan-frac2n2n4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Use $b=a-2$ and solve for $a$, the quadratic $a(a-2)=n^2+2n+3$
$endgroup$
– Claude Leibovici
Jan 28 at 9:48
1
$begingroup$
If $a = 2+b$, then $(2+b)b = n^2 + 2n + 3$. Solve.
$endgroup$
– Euler....IS_ALIVE
Jan 28 at 9:49