$underset{_{arightarrow 0}}{lim }L_{a}^{ast }left( L_{a}L_{a}^{ast }right) ^{-1}L_{a}=?$












1












$begingroup$


Let $varepsilon >0$ and let $L$ be a bounded operator acting on a Hibert space such that $L_{lambda
}=L-lambda I$
is surjective of every $lambda $ such that $varepsilon
>leftvert lambda rightvert >0$
.



I'm trying, by applying the Cauchy criterion, to show that the limit



$underset{_{lambda rightarrow 0}}{lim }L_{lambda }^{ast }left(
L_{lambda }L_{lambda }^{ast }right) ^{-1}L_{lambda }$



exists, where $L_{lambda }^{ast }=L^{ast }-overline{lambda }I.$ If this
is not true, can you give me some counter-example ?



Thank you !










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $varepsilon >0$ and let $L$ be a bounded operator acting on a Hibert space such that $L_{lambda
    }=L-lambda I$
    is surjective of every $lambda $ such that $varepsilon
    >leftvert lambda rightvert >0$
    .



    I'm trying, by applying the Cauchy criterion, to show that the limit



    $underset{_{lambda rightarrow 0}}{lim }L_{lambda }^{ast }left(
    L_{lambda }L_{lambda }^{ast }right) ^{-1}L_{lambda }$



    exists, where $L_{lambda }^{ast }=L^{ast }-overline{lambda }I.$ If this
    is not true, can you give me some counter-example ?



    Thank you !










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let $varepsilon >0$ and let $L$ be a bounded operator acting on a Hibert space such that $L_{lambda
      }=L-lambda I$
      is surjective of every $lambda $ such that $varepsilon
      >leftvert lambda rightvert >0$
      .



      I'm trying, by applying the Cauchy criterion, to show that the limit



      $underset{_{lambda rightarrow 0}}{lim }L_{lambda }^{ast }left(
      L_{lambda }L_{lambda }^{ast }right) ^{-1}L_{lambda }$



      exists, where $L_{lambda }^{ast }=L^{ast }-overline{lambda }I.$ If this
      is not true, can you give me some counter-example ?



      Thank you !










      share|cite|improve this question









      $endgroup$




      Let $varepsilon >0$ and let $L$ be a bounded operator acting on a Hibert space such that $L_{lambda
      }=L-lambda I$
      is surjective of every $lambda $ such that $varepsilon
      >leftvert lambda rightvert >0$
      .



      I'm trying, by applying the Cauchy criterion, to show that the limit



      $underset{_{lambda rightarrow 0}}{lim }L_{lambda }^{ast }left(
      L_{lambda }L_{lambda }^{ast }right) ^{-1}L_{lambda }$



      exists, where $L_{lambda }^{ast }=L^{ast }-overline{lambda }I.$ If this
      is not true, can you give me some counter-example ?



      Thank you !







      functional-analysis limits operator-theory hilbert-spaces adjoint-operators






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 12:17









      Djalal OunadjelaDjalal Ounadjela

      29818




      29818






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Setting $L=0$ shows $L_lambda = -lambda I$, and the operator $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda $ is equal to the identity. So it seems to disprove convergence is going to be hard.



          It is quite easy to show that $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda =I$ holds for finite-dimensional $H$ or normal $L$.



          Here is a partial answer for the general case: Using singular value decomposition of $L=UT_fV^*$, where $U$ is partial isometry ($U:N(U)^perpto R(U)$ is isometry), $V$ isometry, $T_f$ multiplication operator on some $L^2(mu)$.



          Then
          $$
          L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda
          = VT_{bar f-barlambda}U^* (UT_{f-lambda}V^* VT_{bar f-barlambda}U^*)^{-1}UT_{f-lambda}V^*
          =VT_{bar f-barlambda}U^* (UT_{|f|^2+|lambda|^2}U^*)^{-1}UT_{f-lambda}V^*.
          $$

          If $U$ would be a (full) isometry, then clearly this operator reduces to the identity.



          I do not know how to show this for the general case. Maybe someone else has an idea?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much @daw
            $endgroup$
            – Djalal Ounadjela
            Jan 31 at 23:59











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090783%2funderset-a-rightarrow-0-lim-l-a-ast-left-l-al-a-ast-right%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Setting $L=0$ shows $L_lambda = -lambda I$, and the operator $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda $ is equal to the identity. So it seems to disprove convergence is going to be hard.



          It is quite easy to show that $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda =I$ holds for finite-dimensional $H$ or normal $L$.



          Here is a partial answer for the general case: Using singular value decomposition of $L=UT_fV^*$, where $U$ is partial isometry ($U:N(U)^perpto R(U)$ is isometry), $V$ isometry, $T_f$ multiplication operator on some $L^2(mu)$.



          Then
          $$
          L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda
          = VT_{bar f-barlambda}U^* (UT_{f-lambda}V^* VT_{bar f-barlambda}U^*)^{-1}UT_{f-lambda}V^*
          =VT_{bar f-barlambda}U^* (UT_{|f|^2+|lambda|^2}U^*)^{-1}UT_{f-lambda}V^*.
          $$

          If $U$ would be a (full) isometry, then clearly this operator reduces to the identity.



          I do not know how to show this for the general case. Maybe someone else has an idea?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much @daw
            $endgroup$
            – Djalal Ounadjela
            Jan 31 at 23:59
















          1












          $begingroup$

          Setting $L=0$ shows $L_lambda = -lambda I$, and the operator $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda $ is equal to the identity. So it seems to disprove convergence is going to be hard.



          It is quite easy to show that $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda =I$ holds for finite-dimensional $H$ or normal $L$.



          Here is a partial answer for the general case: Using singular value decomposition of $L=UT_fV^*$, where $U$ is partial isometry ($U:N(U)^perpto R(U)$ is isometry), $V$ isometry, $T_f$ multiplication operator on some $L^2(mu)$.



          Then
          $$
          L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda
          = VT_{bar f-barlambda}U^* (UT_{f-lambda}V^* VT_{bar f-barlambda}U^*)^{-1}UT_{f-lambda}V^*
          =VT_{bar f-barlambda}U^* (UT_{|f|^2+|lambda|^2}U^*)^{-1}UT_{f-lambda}V^*.
          $$

          If $U$ would be a (full) isometry, then clearly this operator reduces to the identity.



          I do not know how to show this for the general case. Maybe someone else has an idea?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much @daw
            $endgroup$
            – Djalal Ounadjela
            Jan 31 at 23:59














          1












          1








          1





          $begingroup$

          Setting $L=0$ shows $L_lambda = -lambda I$, and the operator $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda $ is equal to the identity. So it seems to disprove convergence is going to be hard.



          It is quite easy to show that $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda =I$ holds for finite-dimensional $H$ or normal $L$.



          Here is a partial answer for the general case: Using singular value decomposition of $L=UT_fV^*$, where $U$ is partial isometry ($U:N(U)^perpto R(U)$ is isometry), $V$ isometry, $T_f$ multiplication operator on some $L^2(mu)$.



          Then
          $$
          L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda
          = VT_{bar f-barlambda}U^* (UT_{f-lambda}V^* VT_{bar f-barlambda}U^*)^{-1}UT_{f-lambda}V^*
          =VT_{bar f-barlambda}U^* (UT_{|f|^2+|lambda|^2}U^*)^{-1}UT_{f-lambda}V^*.
          $$

          If $U$ would be a (full) isometry, then clearly this operator reduces to the identity.



          I do not know how to show this for the general case. Maybe someone else has an idea?






          share|cite|improve this answer









          $endgroup$



          Setting $L=0$ shows $L_lambda = -lambda I$, and the operator $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda $ is equal to the identity. So it seems to disprove convergence is going to be hard.



          It is quite easy to show that $L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda =I$ holds for finite-dimensional $H$ or normal $L$.



          Here is a partial answer for the general case: Using singular value decomposition of $L=UT_fV^*$, where $U$ is partial isometry ($U:N(U)^perpto R(U)$ is isometry), $V$ isometry, $T_f$ multiplication operator on some $L^2(mu)$.



          Then
          $$
          L_lambda^*(L_lambda L^*_lambda)^{-1}L_lambda
          = VT_{bar f-barlambda}U^* (UT_{f-lambda}V^* VT_{bar f-barlambda}U^*)^{-1}UT_{f-lambda}V^*
          =VT_{bar f-barlambda}U^* (UT_{|f|^2+|lambda|^2}U^*)^{-1}UT_{f-lambda}V^*.
          $$

          If $U$ would be a (full) isometry, then clearly this operator reduces to the identity.



          I do not know how to show this for the general case. Maybe someone else has an idea?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 31 at 7:58









          dawdaw

          24.8k1745




          24.8k1745












          • $begingroup$
            Thank you so much @daw
            $endgroup$
            – Djalal Ounadjela
            Jan 31 at 23:59


















          • $begingroup$
            Thank you so much @daw
            $endgroup$
            – Djalal Ounadjela
            Jan 31 at 23:59
















          $begingroup$
          Thank you so much @daw
          $endgroup$
          – Djalal Ounadjela
          Jan 31 at 23:59




          $begingroup$
          Thank you so much @daw
          $endgroup$
          – Djalal Ounadjela
          Jan 31 at 23:59


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090783%2funderset-a-rightarrow-0-lim-l-a-ast-left-l-al-a-ast-right%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith