Use definition of limit to prove $lim_ {t to a} f(t^2) =L$
$begingroup$
Suppose:
$$lim_ {x to a^2} f(x) =L $$
Use this to prove $lim_{t to a} f(t^2) =L$.
This is evident from the limit substitution rule, but in this course we have not covered this and we should use the formal definition of the limit. That is:
$$ forall epsilon>0 quad exists delta quad s.t. quad |x-a^2|< delta implies |f(x)-L|< epsilon$$
must be used to prove:
$$ forall epsilon>0 quad exists delta quad s.t. quad |t-a|< delta implies |f(t^2)-L|< epsilon$$
how do I make this connection.
real-analysis limits epsilon-delta
$endgroup$
add a comment |
$begingroup$
Suppose:
$$lim_ {x to a^2} f(x) =L $$
Use this to prove $lim_{t to a} f(t^2) =L$.
This is evident from the limit substitution rule, but in this course we have not covered this and we should use the formal definition of the limit. That is:
$$ forall epsilon>0 quad exists delta quad s.t. quad |x-a^2|< delta implies |f(x)-L|< epsilon$$
must be used to prove:
$$ forall epsilon>0 quad exists delta quad s.t. quad |t-a|< delta implies |f(t^2)-L|< epsilon$$
how do I make this connection.
real-analysis limits epsilon-delta
$endgroup$
1
$begingroup$
Maybe this can follow from a more general result which is not so hard to prove… (substitution theorem for limits)
$endgroup$
– James
Jan 28 at 9:46
$begingroup$
What is that $displaystylelim_{ntoinfty}$ doing in the title?
$endgroup$
– José Carlos Santos
Jan 28 at 9:46
add a comment |
$begingroup$
Suppose:
$$lim_ {x to a^2} f(x) =L $$
Use this to prove $lim_{t to a} f(t^2) =L$.
This is evident from the limit substitution rule, but in this course we have not covered this and we should use the formal definition of the limit. That is:
$$ forall epsilon>0 quad exists delta quad s.t. quad |x-a^2|< delta implies |f(x)-L|< epsilon$$
must be used to prove:
$$ forall epsilon>0 quad exists delta quad s.t. quad |t-a|< delta implies |f(t^2)-L|< epsilon$$
how do I make this connection.
real-analysis limits epsilon-delta
$endgroup$
Suppose:
$$lim_ {x to a^2} f(x) =L $$
Use this to prove $lim_{t to a} f(t^2) =L$.
This is evident from the limit substitution rule, but in this course we have not covered this and we should use the formal definition of the limit. That is:
$$ forall epsilon>0 quad exists delta quad s.t. quad |x-a^2|< delta implies |f(x)-L|< epsilon$$
must be used to prove:
$$ forall epsilon>0 quad exists delta quad s.t. quad |t-a|< delta implies |f(t^2)-L|< epsilon$$
how do I make this connection.
real-analysis limits epsilon-delta
real-analysis limits epsilon-delta
edited Jan 28 at 9:50
Wesley Strik
asked Jan 28 at 9:44


Wesley StrikWesley Strik
2,194424
2,194424
1
$begingroup$
Maybe this can follow from a more general result which is not so hard to prove… (substitution theorem for limits)
$endgroup$
– James
Jan 28 at 9:46
$begingroup$
What is that $displaystylelim_{ntoinfty}$ doing in the title?
$endgroup$
– José Carlos Santos
Jan 28 at 9:46
add a comment |
1
$begingroup$
Maybe this can follow from a more general result which is not so hard to prove… (substitution theorem for limits)
$endgroup$
– James
Jan 28 at 9:46
$begingroup$
What is that $displaystylelim_{ntoinfty}$ doing in the title?
$endgroup$
– José Carlos Santos
Jan 28 at 9:46
1
1
$begingroup$
Maybe this can follow from a more general result which is not so hard to prove… (substitution theorem for limits)
$endgroup$
– James
Jan 28 at 9:46
$begingroup$
Maybe this can follow from a more general result which is not so hard to prove… (substitution theorem for limits)
$endgroup$
– James
Jan 28 at 9:46
$begingroup$
What is that $displaystylelim_{ntoinfty}$ doing in the title?
$endgroup$
– José Carlos Santos
Jan 28 at 9:46
$begingroup$
What is that $displaystylelim_{ntoinfty}$ doing in the title?
$endgroup$
– José Carlos Santos
Jan 28 at 9:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$|t-a| <delta'$ implies $|t^{2}-a^{2}|=|t-a||t+a| <delta' (|t|+|a|)<delta' (delta'+2|a|)$. So choose $delta'$ such that $delta' (delta'+2|a|) <delta$. It is enough to take $delta' <1$ and $delta' <frac {delta} {1+2|a|}$. Then $|t-a| <delta'$ implies $|f(t^{2})-L| <epsilon$.
$endgroup$
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090663%2fuse-definition-of-limit-to-prove-lim-t-to-a-ft2-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$|t-a| <delta'$ implies $|t^{2}-a^{2}|=|t-a||t+a| <delta' (|t|+|a|)<delta' (delta'+2|a|)$. So choose $delta'$ such that $delta' (delta'+2|a|) <delta$. It is enough to take $delta' <1$ and $delta' <frac {delta} {1+2|a|}$. Then $|t-a| <delta'$ implies $|f(t^{2})-L| <epsilon$.
$endgroup$
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
add a comment |
$begingroup$
$|t-a| <delta'$ implies $|t^{2}-a^{2}|=|t-a||t+a| <delta' (|t|+|a|)<delta' (delta'+2|a|)$. So choose $delta'$ such that $delta' (delta'+2|a|) <delta$. It is enough to take $delta' <1$ and $delta' <frac {delta} {1+2|a|}$. Then $|t-a| <delta'$ implies $|f(t^{2})-L| <epsilon$.
$endgroup$
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
add a comment |
$begingroup$
$|t-a| <delta'$ implies $|t^{2}-a^{2}|=|t-a||t+a| <delta' (|t|+|a|)<delta' (delta'+2|a|)$. So choose $delta'$ such that $delta' (delta'+2|a|) <delta$. It is enough to take $delta' <1$ and $delta' <frac {delta} {1+2|a|}$. Then $|t-a| <delta'$ implies $|f(t^{2})-L| <epsilon$.
$endgroup$
$|t-a| <delta'$ implies $|t^{2}-a^{2}|=|t-a||t+a| <delta' (|t|+|a|)<delta' (delta'+2|a|)$. So choose $delta'$ such that $delta' (delta'+2|a|) <delta$. It is enough to take $delta' <1$ and $delta' <frac {delta} {1+2|a|}$. Then $|t-a| <delta'$ implies $|f(t^{2})-L| <epsilon$.
answered Jan 28 at 9:49


Kavi Rama MurthyKavi Rama Murthy
70.6k53170
70.6k53170
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
add a comment |
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
$begingroup$
note to self: set $x=t^2$ and it follows.
$endgroup$
– Wesley Strik
Jan 28 at 10:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090663%2fuse-definition-of-limit-to-prove-lim-t-to-a-ft2-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Maybe this can follow from a more general result which is not so hard to prove… (substitution theorem for limits)
$endgroup$
– James
Jan 28 at 9:46
$begingroup$
What is that $displaystylelim_{ntoinfty}$ doing in the title?
$endgroup$
– José Carlos Santos
Jan 28 at 9:46