What is the probability distribution of this AR(1) function?
$begingroup$
I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:
Let $X_t sim AR(1)$, with
$$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$
1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$
2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?
1) No problem for this point but I want to show you how I did it:
Autocovariance function:
$$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$
$$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Similarly,
$$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$
$$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$
$$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$
$$vdots$$
$$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$
Autocorrelation function:
$$rho = frac{gamma(h)}{gamma(0)}$$
which
$$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$
$$=(-0.8)^2 Var(X_t) + 4 + 0$$
$$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?
Any help would be appreciated
probability probability-distributions normal-distribution self-learning time-series
$endgroup$
add a comment |
$begingroup$
I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:
Let $X_t sim AR(1)$, with
$$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$
1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$
2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?
1) No problem for this point but I want to show you how I did it:
Autocovariance function:
$$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$
$$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Similarly,
$$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$
$$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$
$$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$
$$vdots$$
$$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$
Autocorrelation function:
$$rho = frac{gamma(h)}{gamma(0)}$$
which
$$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$
$$=(-0.8)^2 Var(X_t) + 4 + 0$$
$$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?
Any help would be appreciated
probability probability-distributions normal-distribution self-learning time-series
$endgroup$
add a comment |
$begingroup$
I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:
Let $X_t sim AR(1)$, with
$$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$
1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$
2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?
1) No problem for this point but I want to show you how I did it:
Autocovariance function:
$$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$
$$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Similarly,
$$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$
$$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$
$$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$
$$vdots$$
$$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$
Autocorrelation function:
$$rho = frac{gamma(h)}{gamma(0)}$$
which
$$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$
$$=(-0.8)^2 Var(X_t) + 4 + 0$$
$$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?
Any help would be appreciated
probability probability-distributions normal-distribution self-learning time-series
$endgroup$
I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:
Let $X_t sim AR(1)$, with
$$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$
1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$
2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?
1) No problem for this point but I want to show you how I did it:
Autocovariance function:
$$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$
$$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Similarly,
$$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$
$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$
$$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$
$$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$
$$vdots$$
$$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$
Autocorrelation function:
$$rho = frac{gamma(h)}{gamma(0)}$$
which
$$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$
$$=(-0.8)^2 Var(X_t) + 4 + 0$$
$$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?
Any help would be appreciated
probability probability-distributions normal-distribution self-learning time-series
probability probability-distributions normal-distribution self-learning time-series
asked Jan 20 at 13:26
Martina MartyMartina Marty
345
345
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
$$
X_t = -.8LX_t +epsilon_t
$$ or equivalently
$$
(1+.8L)X_t = epsilon_t.
$$ By inverting $1+.8L$, we get
$$
X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
$$ Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
$$
Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
$$as $n,mtoinfty$. By examining its characteristic function, we get
$$begin{eqnarray}
Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
&=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
&=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
end{eqnarray}$$ Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
$$
X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
$$ for some $alpha$. ($alpha$ is not determined.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080573%2fwhat-is-the-probability-distribution-of-this-ar1-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
$$
X_t = -.8LX_t +epsilon_t
$$ or equivalently
$$
(1+.8L)X_t = epsilon_t.
$$ By inverting $1+.8L$, we get
$$
X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
$$ Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
$$
Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
$$as $n,mtoinfty$. By examining its characteristic function, we get
$$begin{eqnarray}
Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
&=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
&=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
end{eqnarray}$$ Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
$$
X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
$$ for some $alpha$. ($alpha$ is not determined.)
$endgroup$
add a comment |
$begingroup$
Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
$$
X_t = -.8LX_t +epsilon_t
$$ or equivalently
$$
(1+.8L)X_t = epsilon_t.
$$ By inverting $1+.8L$, we get
$$
X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
$$ Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
$$
Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
$$as $n,mtoinfty$. By examining its characteristic function, we get
$$begin{eqnarray}
Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
&=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
&=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
end{eqnarray}$$ Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
$$
X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
$$ for some $alpha$. ($alpha$ is not determined.)
$endgroup$
add a comment |
$begingroup$
Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
$$
X_t = -.8LX_t +epsilon_t
$$ or equivalently
$$
(1+.8L)X_t = epsilon_t.
$$ By inverting $1+.8L$, we get
$$
X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
$$ Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
$$
Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
$$as $n,mtoinfty$. By examining its characteristic function, we get
$$begin{eqnarray}
Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
&=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
&=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
end{eqnarray}$$ Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
$$
X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
$$ for some $alpha$. ($alpha$ is not determined.)
$endgroup$
Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
$$
X_t = -.8LX_t +epsilon_t
$$ or equivalently
$$
(1+.8L)X_t = epsilon_t.
$$ By inverting $1+.8L$, we get
$$
X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
$$ Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
$$
Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
$$as $n,mtoinfty$. By examining its characteristic function, we get
$$begin{eqnarray}
Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
&=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
&=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
end{eqnarray}$$ Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
$$
X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
$$ for some $alpha$. ($alpha$ is not determined.)
answered Jan 20 at 13:50


SongSong
16.5k1741
16.5k1741
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080573%2fwhat-is-the-probability-distribution-of-this-ar1-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown