What is the probability distribution of this AR(1) function?












1












$begingroup$


I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:



Let $X_t sim AR(1)$, with
$$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$






1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$



2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?





1) No problem for this point but I want to show you how I did it:



Autocovariance function:
$$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$



$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$



$$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$



Similarly,



$$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



$$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$



$$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$



$$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$



$$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$



$$vdots$$



$$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$






Autocorrelation function:



$$rho = frac{gamma(h)}{gamma(0)}$$



which



$$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$



$$=(-0.8)^2 Var(X_t) + 4 + 0$$



$$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$





Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?



Any help would be appreciated










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:



    Let $X_t sim AR(1)$, with
    $$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$






    1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$



    2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?





    1) No problem for this point but I want to show you how I did it:



    Autocovariance function:
    $$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



    $$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$



    $$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$



    $$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$



    Similarly,



    $$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



    $$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$



    $$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$



    $$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$



    $$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$



    $$vdots$$



    $$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$






    Autocorrelation function:



    $$rho = frac{gamma(h)}{gamma(0)}$$



    which



    $$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



    $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$



    $$=(-0.8)^2 Var(X_t) + 4 + 0$$



    $$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$





    Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?



    Any help would be appreciated










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:



      Let $X_t sim AR(1)$, with
      $$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$






      1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$



      2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?





      1) No problem for this point but I want to show you how I did it:



      Autocovariance function:
      $$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      $$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$



      $$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$



      $$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      Similarly,



      $$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      $$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$



      $$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$



      $$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$



      $$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$



      $$vdots$$



      $$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$






      Autocorrelation function:



      $$rho = frac{gamma(h)}{gamma(0)}$$



      which



      $$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$



      $$=(-0.8)^2 Var(X_t) + 4 + 0$$



      $$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$





      Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?



      Any help would be appreciated










      share|cite|improve this question









      $endgroup$




      I'm preparing the exam for "stochastic models" and I encountered this exercise which is giving me a lot of problems:



      Let $X_t sim AR(1)$, with
      $$X_t=-0.8X_{t-1}+ epsilon_t, ~~~~~~~~~~epsilon_t sim WN(0,4)$$






      1) Compute the autocovariance and the autocorrelation functions of $X_t$ at lags $h ge 0$



      2) Assuming that $epsilon_t sim GWN(0,4)$, what is the probability distribution of $X_t$ for all $t$?





      1) No problem for this point but I want to show you how I did it:



      Autocovariance function:
      $$gamma(1)=operatorname{Cov}(X_t,X_{t-1})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      $$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-1})$$



      $$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-1})+operatorname{Cov}(epsilon_t, X_{t-1})$$



      $$=-0.8 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      Similarly,



      $$gamma(2)=operatorname{Cov}(X_t,X_{t-2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      $$=operatorname{Cov}(-0.8X_{t-1}+epsilon_t, X_{t-2})$$



      $$~~~~~~~~~~~~~~~~~~~=operatorname{Cov}(-0.8X_{t-1}, X_{t-2})+operatorname{Cov}(epsilon_t, X_{t-2})$$



      $$=(-0.8) cdot gamma(1)~~~~~~~~~~~~~~~~~~~~~~~$$



      $$=(-0.8)^2 cdot gamma(0)~~~~~~~~~~~~~~~~~~~~~$$



      $$vdots$$



      $$gamma(h)=gammaleft(0right)cdotphi^{left|hright|}$$






      Autocorrelation function:



      $$rho = frac{gamma(h)}{gamma(0)}$$



      which



      $$gamma(0)=Var(X_t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$



      $$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=Var(-0.8X_{t-1})+Var(epsilon_t)+2operatorname{Cov}(X_{t-1},epsilon_t)$$



      $$=(-0.8)^2 Var(X_t) + 4 + 0$$



      $$=11.bar{11}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$





      Point 2 is my main problem because I don't know where to begin in order to solve it. One sure thing is that the Gaussian White Noise with zero-mean has a normal distribution. Then? How can I use the data that I have in order to find this probability distribution?



      Any help would be appreciated







      probability probability-distributions normal-distribution self-learning time-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 20 at 13:26









      Martina MartyMartina Marty

      345




      345






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
          $$
          X_t = -.8LX_t +epsilon_t
          $$
          or equivalently
          $$
          (1+.8L)X_t = epsilon_t.
          $$
          By inverting $1+.8L$, we get
          $$
          X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
          $$
          Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
          $$
          Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
          $$
          as $n,mtoinfty$. By examining its characteristic function, we get
          $$begin{eqnarray}
          Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
          &=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
          &=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
          end{eqnarray}$$
          Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
          $$
          X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
          $$
          for some $alpha$. ($alpha$ is not determined.)






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080573%2fwhat-is-the-probability-distribution-of-this-ar1-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
            $$
            X_t = -.8LX_t +epsilon_t
            $$
            or equivalently
            $$
            (1+.8L)X_t = epsilon_t.
            $$
            By inverting $1+.8L$, we get
            $$
            X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
            $$
            Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
            $$
            Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
            $$
            as $n,mtoinfty$. By examining its characteristic function, we get
            $$begin{eqnarray}
            Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
            &=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
            &=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
            end{eqnarray}$$
            Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
            $$
            X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
            $$
            for some $alpha$. ($alpha$ is not determined.)






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
              $$
              X_t = -.8LX_t +epsilon_t
              $$
              or equivalently
              $$
              (1+.8L)X_t = epsilon_t.
              $$
              By inverting $1+.8L$, we get
              $$
              X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
              $$
              Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
              $$
              Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
              $$
              as $n,mtoinfty$. By examining its characteristic function, we get
              $$begin{eqnarray}
              Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
              &=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
              &=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
              end{eqnarray}$$
              Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
              $$
              X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
              $$
              for some $alpha$. ($alpha$ is not determined.)






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
                $$
                X_t = -.8LX_t +epsilon_t
                $$
                or equivalently
                $$
                (1+.8L)X_t = epsilon_t.
                $$
                By inverting $1+.8L$, we get
                $$
                X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
                $$
                Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
                $$
                Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
                $$
                as $n,mtoinfty$. By examining its characteristic function, we get
                $$begin{eqnarray}
                Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
                &=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
                &=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
                end{eqnarray}$$
                Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
                $$
                X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
                $$
                for some $alpha$. ($alpha$ is not determined.)






                share|cite|improve this answer









                $endgroup$



                Let $L$ denote the lag operator, i.e. $LX_{t}=X_{t-1}$ and $Lepsilon_t =epsilon_{t-1}$. The given equation can be written as
                $$
                X_t = -.8LX_t +epsilon_t
                $$
                or equivalently
                $$
                (1+.8L)X_t = epsilon_t.
                $$
                By inverting $1+.8L$, we get
                $$
                X_t =alpha+(1+.8L)^{-1}epsilon_t =alpha+sum_{j=0}^infty (-.8L)^j epsilon_t=alpha+sum_{j=0}^infty (-.8)^j epsilon_{t-j}.
                $$
                Now, we claim that $sum_{j=0}^infty (-.8)^j epsilon_{t-j}$ is normally distributed with mean $0$ and variance equal to $4sum_{j=0}^infty (.64)^j=frac{100}{9}.$ The mean-square convergence of the series can be easily seen from the fact that
                $$
                Bbb Eleft[left|sum_{nle jle m}(-.8)^j epsilon_{t-j}right|^2right]=4sum_{nle jle m}(.64)^j to 0
                $$
                as $n,mtoinfty$. By examining its characteristic function, we get
                $$begin{eqnarray}
                Bbb Eleft[e^{itsumlimits_{j=0}^infty (-.8)^j epsilon_{t-j}}right]&=&prod_{j=0}^infty Bbb Eleft[e^{it (-.8)^j epsilon_{t-j}}right]\
                &=&prod_{j=0}^infty expleft[-frac{t^2 text{Var}left[(-.8)^j epsilon_{t-j}right]}{2}right]\&=&prod_{j=0}^infty expleft[-frac{4t^2cdot(.64)^j}{2}right]\
                &=&expleft[-frac{4t^2cdotsum_{j=0}^infty(.64)^j}{2}right]=expleft[-frac{t^2cdotfrac{100}{9}}{2}right].
                end{eqnarray}$$
                Since the characteristic function of $mathcal{N}(mu,sigma^2)$ is $expleft(itmu -frac{sigma^2t^2}{2}right)$, it follows
                $$
                X_t sim_d mathcal{N}left(alpha,left(frac{10}{3}right)^2right)
                $$
                for some $alpha$. ($alpha$ is not determined.)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 20 at 13:50









                SongSong

                16.5k1741




                16.5k1741






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080573%2fwhat-is-the-probability-distribution-of-this-ar1-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith