A good formula for singular value matrix of SVD?
$begingroup$
For the SVD, $A_{mtimes n}=U_mSigma_{mtimes n}V^T_n$ where $U$ & $V$ are orthogonal matrices & $Sigma$ is diagonal, I am trying to obtain a formula for $Sigma$...
If $SigmaSigma^T$ was found using $AA^T=USigmaSigma^TU^T$, then:
$$Sigma = left{begin{array}{ll}
(SigmaSigma^T)^{1/2}begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}, & m > n\
(SigmaSigma^T)^{1/2}, & m = n\
(SigmaSigma^T)^{1/2}begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}, & m < n
end{array}
right.$$
Likewise, if $Sigma^TSigma$ was found using $A^TA=VSigma^TSigma V^T$, then:
$$Sigma = left{begin{array}{ll}
begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m > n\
(Sigma^TSigma)^{1/2}, & m = n\
begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m < n
end{array}
right.$$
Did I make any mistakes? If not, is there a more elegant/simpler formula?
Notes:
- I knew that the square roots of $SigmaSigma^T$ & $Sigma^TSigma$ would have only real entries bc they are just the eigenvalue matrices of the positive semi-definite $AA^T$ & $A^TA$, resp. whose eigenvalues are always positive.
$SigmaSigma^T$ & $Sigma^TSigma$ are square diagonal matrices so finding the square roots of their diagonal elements is all that is required to find $(SigmaSigma^T)^{1/2}$ & $(Sigma^TSigma)^{1/2}$.- From $AV=USigma$ I found that $Sigma=U^TAV$
linear-algebra eigenvalues-eigenvectors matrix-decomposition singularvalues
$endgroup$
add a comment |
$begingroup$
For the SVD, $A_{mtimes n}=U_mSigma_{mtimes n}V^T_n$ where $U$ & $V$ are orthogonal matrices & $Sigma$ is diagonal, I am trying to obtain a formula for $Sigma$...
If $SigmaSigma^T$ was found using $AA^T=USigmaSigma^TU^T$, then:
$$Sigma = left{begin{array}{ll}
(SigmaSigma^T)^{1/2}begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}, & m > n\
(SigmaSigma^T)^{1/2}, & m = n\
(SigmaSigma^T)^{1/2}begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}, & m < n
end{array}
right.$$
Likewise, if $Sigma^TSigma$ was found using $A^TA=VSigma^TSigma V^T$, then:
$$Sigma = left{begin{array}{ll}
begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m > n\
(Sigma^TSigma)^{1/2}, & m = n\
begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m < n
end{array}
right.$$
Did I make any mistakes? If not, is there a more elegant/simpler formula?
Notes:
- I knew that the square roots of $SigmaSigma^T$ & $Sigma^TSigma$ would have only real entries bc they are just the eigenvalue matrices of the positive semi-definite $AA^T$ & $A^TA$, resp. whose eigenvalues are always positive.
$SigmaSigma^T$ & $Sigma^TSigma$ are square diagonal matrices so finding the square roots of their diagonal elements is all that is required to find $(SigmaSigma^T)^{1/2}$ & $(Sigma^TSigma)^{1/2}$.- From $AV=USigma$ I found that $Sigma=U^TAV$
linear-algebra eigenvalues-eigenvectors matrix-decomposition singularvalues
$endgroup$
add a comment |
$begingroup$
For the SVD, $A_{mtimes n}=U_mSigma_{mtimes n}V^T_n$ where $U$ & $V$ are orthogonal matrices & $Sigma$ is diagonal, I am trying to obtain a formula for $Sigma$...
If $SigmaSigma^T$ was found using $AA^T=USigmaSigma^TU^T$, then:
$$Sigma = left{begin{array}{ll}
(SigmaSigma^T)^{1/2}begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}, & m > n\
(SigmaSigma^T)^{1/2}, & m = n\
(SigmaSigma^T)^{1/2}begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}, & m < n
end{array}
right.$$
Likewise, if $Sigma^TSigma$ was found using $A^TA=VSigma^TSigma V^T$, then:
$$Sigma = left{begin{array}{ll}
begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m > n\
(Sigma^TSigma)^{1/2}, & m = n\
begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m < n
end{array}
right.$$
Did I make any mistakes? If not, is there a more elegant/simpler formula?
Notes:
- I knew that the square roots of $SigmaSigma^T$ & $Sigma^TSigma$ would have only real entries bc they are just the eigenvalue matrices of the positive semi-definite $AA^T$ & $A^TA$, resp. whose eigenvalues are always positive.
$SigmaSigma^T$ & $Sigma^TSigma$ are square diagonal matrices so finding the square roots of their diagonal elements is all that is required to find $(SigmaSigma^T)^{1/2}$ & $(Sigma^TSigma)^{1/2}$.- From $AV=USigma$ I found that $Sigma=U^TAV$
linear-algebra eigenvalues-eigenvectors matrix-decomposition singularvalues
$endgroup$
For the SVD, $A_{mtimes n}=U_mSigma_{mtimes n}V^T_n$ where $U$ & $V$ are orthogonal matrices & $Sigma$ is diagonal, I am trying to obtain a formula for $Sigma$...
If $SigmaSigma^T$ was found using $AA^T=USigmaSigma^TU^T$, then:
$$Sigma = left{begin{array}{ll}
(SigmaSigma^T)^{1/2}begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}, & m > n\
(SigmaSigma^T)^{1/2}, & m = n\
(SigmaSigma^T)^{1/2}begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}, & m < n
end{array}
right.$$
Likewise, if $Sigma^TSigma$ was found using $A^TA=VSigma^TSigma V^T$, then:
$$Sigma = left{begin{array}{ll}
begin{bmatrix}I_n\0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m > n\
(Sigma^TSigma)^{1/2}, & m = n\
begin{bmatrix}I_m & 0end{bmatrix}_{mtimes n}(Sigma^TSigma)^{1/2}, & m < n
end{array}
right.$$
Did I make any mistakes? If not, is there a more elegant/simpler formula?
Notes:
- I knew that the square roots of $SigmaSigma^T$ & $Sigma^TSigma$ would have only real entries bc they are just the eigenvalue matrices of the positive semi-definite $AA^T$ & $A^TA$, resp. whose eigenvalues are always positive.
$SigmaSigma^T$ & $Sigma^TSigma$ are square diagonal matrices so finding the square roots of their diagonal elements is all that is required to find $(SigmaSigma^T)^{1/2}$ & $(Sigma^TSigma)^{1/2}$.- From $AV=USigma$ I found that $Sigma=U^TAV$
linear-algebra eigenvalues-eigenvectors matrix-decomposition singularvalues
linear-algebra eigenvalues-eigenvectors matrix-decomposition singularvalues
edited Jan 31 at 2:19
Landon
asked Jan 31 at 2:03


LandonLandon
1139
1139
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094392%2fa-good-formula-for-singular-value-matrix-of-svd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094392%2fa-good-formula-for-singular-value-matrix-of-svd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown