Assistance in completing the proof: (P → Q)∧(Q → R) is equivalent to (P → R)∧ [(P ↔ Q) ∨ (R ↔...












0












$begingroup$


There is a proof in a previous thread that converts the two expressions (P → Q)∧(Q → R) and (P → R)∧ [(P ↔ Q) ∨ (R ↔ Q)] to a CNF-formula thereby proving their equivalencies.



I am approaching the proof from an entirely different proof technique and am stuck. Instead of using truth tables, or converting these two expressions to the same CNF/DNF-formulas I'd rather prove this by using logical equivalencies.



I am having trouble filling in the missing steps, as I get into a distributive property loop in my attempt to group and eliminate terms.



Can someone show me how to complete the proof that I started and help me fill in my missing steps?



Below is my proof attempt:



$(P to R)land [(P defliff{leftrightarrow}liff Q) lor (R liff Q)] =$



$(lnot P lor R) land [(Pto Q) land (Qto P) lor (Rto Q) land (Qto R)] =$



$(lnot P lor R) land [(Pto Q) land (lnot Ptolnot Q) lor (Rto Q) land (lnot Rtolnot Q)] =$



$(lnot P lor R) land [(lnot P lor Q) land (lnotlnot P lorlnot Q) lor (lnot R lor Q) land (lnotlnot R lor lnot Q)] =$



$(lnot P lor R) land [(lnot P lor Q) land (P lorlnot Q) lor (lnot R lor Q) land (R lorlnot Q)] =$



$(lnot P lor R) land [((lnot P lor Q) land P) lor (lnot P lor Q) landlnot Q) lor (lnot R lor Q) land R) lor (lnot R lor Q) landlnot Q)] =$



$(lnot P lor R) land [(P land(lnot P lor Q)) lor (lnot Q land (lnot P lor Q)) lor (R land (lnot R lor Q)) lor (lnot Q land (lnot R lor Q))] =$



…steps...



$(lnot P lor Q) land (lnot Rtolnot Q)=$



$(lnot P lor Q) land (lnotlnot R lorlnot Q)=$



$(lnot P lor Q) land (R lorlnot Q)=$



$(P to Q)land (Q to R)$



Q.E.D



I would like to see how to complete the "steps" part, as this is where my chain of distributive property loops begin that don't lead me closer to the conclusion. Could someone show me a complete proof?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    There is a proof in a previous thread that converts the two expressions (P → Q)∧(Q → R) and (P → R)∧ [(P ↔ Q) ∨ (R ↔ Q)] to a CNF-formula thereby proving their equivalencies.



    I am approaching the proof from an entirely different proof technique and am stuck. Instead of using truth tables, or converting these two expressions to the same CNF/DNF-formulas I'd rather prove this by using logical equivalencies.



    I am having trouble filling in the missing steps, as I get into a distributive property loop in my attempt to group and eliminate terms.



    Can someone show me how to complete the proof that I started and help me fill in my missing steps?



    Below is my proof attempt:



    $(P to R)land [(P defliff{leftrightarrow}liff Q) lor (R liff Q)] =$



    $(lnot P lor R) land [(Pto Q) land (Qto P) lor (Rto Q) land (Qto R)] =$



    $(lnot P lor R) land [(Pto Q) land (lnot Ptolnot Q) lor (Rto Q) land (lnot Rtolnot Q)] =$



    $(lnot P lor R) land [(lnot P lor Q) land (lnotlnot P lorlnot Q) lor (lnot R lor Q) land (lnotlnot R lor lnot Q)] =$



    $(lnot P lor R) land [(lnot P lor Q) land (P lorlnot Q) lor (lnot R lor Q) land (R lorlnot Q)] =$



    $(lnot P lor R) land [((lnot P lor Q) land P) lor (lnot P lor Q) landlnot Q) lor (lnot R lor Q) land R) lor (lnot R lor Q) landlnot Q)] =$



    $(lnot P lor R) land [(P land(lnot P lor Q)) lor (lnot Q land (lnot P lor Q)) lor (R land (lnot R lor Q)) lor (lnot Q land (lnot R lor Q))] =$



    …steps...



    $(lnot P lor Q) land (lnot Rtolnot Q)=$



    $(lnot P lor Q) land (lnotlnot R lorlnot Q)=$



    $(lnot P lor Q) land (R lorlnot Q)=$



    $(P to Q)land (Q to R)$



    Q.E.D



    I would like to see how to complete the "steps" part, as this is where my chain of distributive property loops begin that don't lead me closer to the conclusion. Could someone show me a complete proof?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      There is a proof in a previous thread that converts the two expressions (P → Q)∧(Q → R) and (P → R)∧ [(P ↔ Q) ∨ (R ↔ Q)] to a CNF-formula thereby proving their equivalencies.



      I am approaching the proof from an entirely different proof technique and am stuck. Instead of using truth tables, or converting these two expressions to the same CNF/DNF-formulas I'd rather prove this by using logical equivalencies.



      I am having trouble filling in the missing steps, as I get into a distributive property loop in my attempt to group and eliminate terms.



      Can someone show me how to complete the proof that I started and help me fill in my missing steps?



      Below is my proof attempt:



      $(P to R)land [(P defliff{leftrightarrow}liff Q) lor (R liff Q)] =$



      $(lnot P lor R) land [(Pto Q) land (Qto P) lor (Rto Q) land (Qto R)] =$



      $(lnot P lor R) land [(Pto Q) land (lnot Ptolnot Q) lor (Rto Q) land (lnot Rtolnot Q)] =$



      $(lnot P lor R) land [(lnot P lor Q) land (lnotlnot P lorlnot Q) lor (lnot R lor Q) land (lnotlnot R lor lnot Q)] =$



      $(lnot P lor R) land [(lnot P lor Q) land (P lorlnot Q) lor (lnot R lor Q) land (R lorlnot Q)] =$



      $(lnot P lor R) land [((lnot P lor Q) land P) lor (lnot P lor Q) landlnot Q) lor (lnot R lor Q) land R) lor (lnot R lor Q) landlnot Q)] =$



      $(lnot P lor R) land [(P land(lnot P lor Q)) lor (lnot Q land (lnot P lor Q)) lor (R land (lnot R lor Q)) lor (lnot Q land (lnot R lor Q))] =$



      …steps...



      $(lnot P lor Q) land (lnot Rtolnot Q)=$



      $(lnot P lor Q) land (lnotlnot R lorlnot Q)=$



      $(lnot P lor Q) land (R lorlnot Q)=$



      $(P to Q)land (Q to R)$



      Q.E.D



      I would like to see how to complete the "steps" part, as this is where my chain of distributive property loops begin that don't lead me closer to the conclusion. Could someone show me a complete proof?










      share|cite|improve this question











      $endgroup$




      There is a proof in a previous thread that converts the two expressions (P → Q)∧(Q → R) and (P → R)∧ [(P ↔ Q) ∨ (R ↔ Q)] to a CNF-formula thereby proving their equivalencies.



      I am approaching the proof from an entirely different proof technique and am stuck. Instead of using truth tables, or converting these two expressions to the same CNF/DNF-formulas I'd rather prove this by using logical equivalencies.



      I am having trouble filling in the missing steps, as I get into a distributive property loop in my attempt to group and eliminate terms.



      Can someone show me how to complete the proof that I started and help me fill in my missing steps?



      Below is my proof attempt:



      $(P to R)land [(P defliff{leftrightarrow}liff Q) lor (R liff Q)] =$



      $(lnot P lor R) land [(Pto Q) land (Qto P) lor (Rto Q) land (Qto R)] =$



      $(lnot P lor R) land [(Pto Q) land (lnot Ptolnot Q) lor (Rto Q) land (lnot Rtolnot Q)] =$



      $(lnot P lor R) land [(lnot P lor Q) land (lnotlnot P lorlnot Q) lor (lnot R lor Q) land (lnotlnot R lor lnot Q)] =$



      $(lnot P lor R) land [(lnot P lor Q) land (P lorlnot Q) lor (lnot R lor Q) land (R lorlnot Q)] =$



      $(lnot P lor R) land [((lnot P lor Q) land P) lor (lnot P lor Q) landlnot Q) lor (lnot R lor Q) land R) lor (lnot R lor Q) landlnot Q)] =$



      $(lnot P lor R) land [(P land(lnot P lor Q)) lor (lnot Q land (lnot P lor Q)) lor (R land (lnot R lor Q)) lor (lnot Q land (lnot R lor Q))] =$



      …steps...



      $(lnot P lor Q) land (lnot Rtolnot Q)=$



      $(lnot P lor Q) land (lnotlnot R lorlnot Q)=$



      $(lnot P lor Q) land (R lorlnot Q)=$



      $(P to Q)land (Q to R)$



      Q.E.D



      I would like to see how to complete the "steps" part, as this is where my chain of distributive property loops begin that don't lead me closer to the conclusion. Could someone show me a complete proof?







      logic propositional-calculus boolean-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 22:56









      Graham Kemp

      87.6k43578




      87.6k43578










      asked Jan 29 at 19:08









      tree_traversaltree_traversal

      386




      386






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Here are some useful but elementary equivalence principles:



          Complement



          $$P lor neg P Leftrightarrow top$$



          $$P land neg P Leftrightarrow bot$$



          Annihilation



          $$P lor top Leftrightarrow top$$



          $$P land bot Leftrightarrow bot$$



          Identity



          $$P land top Leftrightarrow P$$



          $$P lor bot Leftrightarrow P$$



          Idempotence



          $$P lor P = P$$



          $$P land P = P$$



          Also, as you noticed, the whole big right terms does indeed not get you anywhere ... you need to work in the left term $neg P lor R$



          So, starting a few lines from before you get 'stuck' (because indeed, you're just going in loops at that point) (and also throwing in some necessary parentheses):



          $(neg P lor R) land [color{red}((neg P lor Q) land (P lor neg Q)color{red}) lor color{red}((neg R lor Q) land (R lor neg Q)color{red})] =$



          $(neg P land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) lor (R land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) =$



          $[neg P land ((neg P lor Q) land (P lor neg Q))] lor [neg P land ((neg R lor Q) land (R lor neg Q))] lor [R land ((neg P lor Q) land (P lor neg Q))] lor [R land ((neg R lor Q) land (R lor neg Q))] =$



          (dropping unncessary parentheses)



          $[neg P land (neg P lor Q) land (P lor neg Q)] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land (neg R lor Q) land (R lor neg Q)]$



          OK, now two handy laws are:



          Absorption



          $$P land (P lor Q) = P$$



          Reduction



          $$P land (neg P lor Q) = P land Q$$



          Applying these, we get:



          $[neg P land neg Q] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land Q ]$



          OK, and now 'unDistribute' the $neg P $ and the $R$:



          $= [neg P land (neg Q lor ((neg R lor Q) land (R lor neg Q)))] lor [R land (((neg P lor Q) land (P lor neg Q)) lor Q) ]$



          and now you can distribute the $neg Q$ and the $Q$:



          $= [neg P land (neg Q lor (neg R lor Q)) land (neg Q lor (R lor neg Q))] lor [R land ((neg P lor Q) lor Q) land ((P lor neg Q) lor Q) ] =$



          (dropping unncessary parentheses)



          $[neg P land (neg Q lor neg R lor Q) land (neg Q lor R lor neg Q)] lor [R land (neg P lor Q lor Q) land (P lor neg Q lor Q) ]$



          And now you can use those simplification laws from the start of my post:



          (Complement:)



          $[neg P land (neg R lor top) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor top) ]$



          (Annihilation:)



          $=[neg P land top land (R lor neg Q)] lor [R land (neg P lor Q) land top ]$



          (Identity:)



          $=[neg P land (R lor neg Q)] lor [R land (neg P lor Q)]$



          (Distribution:)



          $=(neg P land R) lor (neg P land neg Q) lor (R land neg P) lor (R land Q)$



          (Commutation:)



          $=(neg P land R) lor (neg P land neg Q) lor (neg P land R) lor (R land Q)$



          (Idempotence:)



          $=(neg P land R) lor (neg P land neg Q) lor (R land Q)$



          (Distribution 2*2*2:)



          $=(neg P lor neg P lor R) land (neg P lor neg Q lor R) land (neg P lor neg P lor Q) land (neg P lor neg Q lor Q) land (R lor neg P lor R) land (R lor neg Q lor R) land (R lor neg P lor Q) land (R lor neg Q lor Q)$



          (Complement:)



          $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor top) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land (R lor top)$



          (Annihilation:)



          $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land top land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land top$



          (Identity:)



          $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) $



          (two Absorptions and an Idempotence:)



          $=(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



          Phew! Almost there ....



          Now, use:



          Adjacency



          $$P = (P lor Q) land (P lor neg Q)$$



          Applied to where we were:



          $(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



          (Adjacency:)



          $=(neg P lor R lor Q) land (neg P lor R lor neg Q) land (neg P lor Q) land (neg Q lor R)$



          (Two Absorptions)



          $(neg P lor Q) land (neg Q lor R)$



          .. and finally we're there! Sheesh!






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Comments are not for extended discussion; this conversation has been moved to chat.
            $endgroup$
            – Aloizio Macedo
            Jan 30 at 17:21



















          0












          $begingroup$

          Your approach - which I continued in my first Answer - effectively puts the statements into their CNF ... which is what you were trying to avoid.



          So, I figure I would give an Alternative answer, working with the whole conditionals, rather than breaking the statements down all the way to literals.



          Now, this is going to require some equivalence principles involving conditionals. Notice that in my other answer I showed that



          $$(neg P lor R) land (neg P lor Q) land (neg Q lor R) = (neg P lor Q) land (neg Q lor R)$$



          This equivalence is actually known to be the Consensus Theorem, which also has a conditional form:



          Conditional Consensus



          $$(P rightarrow R) land (P rightarrow Q) land (Q rightarrow R) = (P rightarrow Q) land (Q rightarrow R)$$



          OK, that's the key equivalence I'll be using, but I want one more, which is:



          Conditional Tautology



          $$(P rightarrow Q) lor (Q rightarrow R) = top$$



          OK, with that, here goes:



          $(P rightarrow R) land ((P leftrightarrow Q) lor (Q leftrightarrow R))=$



          (Work out biconditional as two conditionals:)



          $(P rightarrow R) land (((P rightarrow Q) land (Q rightarrow P)) lor ((Q rightarrow R) land (R rightarrow Q)))=$



          (DIstribution of $P rightarrow R$:)



          $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q))=$



          (Consensus Conditional form!)



          $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P) land (Q rightarrow R)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q) land (P rightarrow Q))$



          (Undistribution of three terms in common:)



          $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow R)) land ((Q rightarrow P) lor (R rightarrow Q))=$



          (conditional Consensus and Conditional Tautology:)



          $((P rightarrow Q) land (Q rightarrow R)) land top=$



          $(P rightarrow Q) land (Q rightarrow R)$



          Ah, much better!






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092595%2fassistance-in-completing-the-proof-p-%25e2%2586%2592-q%25e2%2588%25a7q-%25e2%2586%2592-r-is-equivalent-to-p-%25e2%2586%2592-r%25e2%2588%25a7%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Here are some useful but elementary equivalence principles:



            Complement



            $$P lor neg P Leftrightarrow top$$



            $$P land neg P Leftrightarrow bot$$



            Annihilation



            $$P lor top Leftrightarrow top$$



            $$P land bot Leftrightarrow bot$$



            Identity



            $$P land top Leftrightarrow P$$



            $$P lor bot Leftrightarrow P$$



            Idempotence



            $$P lor P = P$$



            $$P land P = P$$



            Also, as you noticed, the whole big right terms does indeed not get you anywhere ... you need to work in the left term $neg P lor R$



            So, starting a few lines from before you get 'stuck' (because indeed, you're just going in loops at that point) (and also throwing in some necessary parentheses):



            $(neg P lor R) land [color{red}((neg P lor Q) land (P lor neg Q)color{red}) lor color{red}((neg R lor Q) land (R lor neg Q)color{red})] =$



            $(neg P land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) lor (R land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) =$



            $[neg P land ((neg P lor Q) land (P lor neg Q))] lor [neg P land ((neg R lor Q) land (R lor neg Q))] lor [R land ((neg P lor Q) land (P lor neg Q))] lor [R land ((neg R lor Q) land (R lor neg Q))] =$



            (dropping unncessary parentheses)



            $[neg P land (neg P lor Q) land (P lor neg Q)] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land (neg R lor Q) land (R lor neg Q)]$



            OK, now two handy laws are:



            Absorption



            $$P land (P lor Q) = P$$



            Reduction



            $$P land (neg P lor Q) = P land Q$$



            Applying these, we get:



            $[neg P land neg Q] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land Q ]$



            OK, and now 'unDistribute' the $neg P $ and the $R$:



            $= [neg P land (neg Q lor ((neg R lor Q) land (R lor neg Q)))] lor [R land (((neg P lor Q) land (P lor neg Q)) lor Q) ]$



            and now you can distribute the $neg Q$ and the $Q$:



            $= [neg P land (neg Q lor (neg R lor Q)) land (neg Q lor (R lor neg Q))] lor [R land ((neg P lor Q) lor Q) land ((P lor neg Q) lor Q) ] =$



            (dropping unncessary parentheses)



            $[neg P land (neg Q lor neg R lor Q) land (neg Q lor R lor neg Q)] lor [R land (neg P lor Q lor Q) land (P lor neg Q lor Q) ]$



            And now you can use those simplification laws from the start of my post:



            (Complement:)



            $[neg P land (neg R lor top) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor top) ]$



            (Annihilation:)



            $=[neg P land top land (R lor neg Q)] lor [R land (neg P lor Q) land top ]$



            (Identity:)



            $=[neg P land (R lor neg Q)] lor [R land (neg P lor Q)]$



            (Distribution:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land neg P) lor (R land Q)$



            (Commutation:)



            $=(neg P land R) lor (neg P land neg Q) lor (neg P land R) lor (R land Q)$



            (Idempotence:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land Q)$



            (Distribution 2*2*2:)



            $=(neg P lor neg P lor R) land (neg P lor neg Q lor R) land (neg P lor neg P lor Q) land (neg P lor neg Q lor Q) land (R lor neg P lor R) land (R lor neg Q lor R) land (R lor neg P lor Q) land (R lor neg Q lor Q)$



            (Complement:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor top) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land (R lor top)$



            (Annihilation:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land top land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land top$



            (Identity:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) $



            (two Absorptions and an Idempotence:)



            $=(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            Phew! Almost there ....



            Now, use:



            Adjacency



            $$P = (P lor Q) land (P lor neg Q)$$



            Applied to where we were:



            $(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            (Adjacency:)



            $=(neg P lor R lor Q) land (neg P lor R lor neg Q) land (neg P lor Q) land (neg Q lor R)$



            (Two Absorptions)



            $(neg P lor Q) land (neg Q lor R)$



            .. and finally we're there! Sheesh!






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Comments are not for extended discussion; this conversation has been moved to chat.
              $endgroup$
              – Aloizio Macedo
              Jan 30 at 17:21
















            1












            $begingroup$

            Here are some useful but elementary equivalence principles:



            Complement



            $$P lor neg P Leftrightarrow top$$



            $$P land neg P Leftrightarrow bot$$



            Annihilation



            $$P lor top Leftrightarrow top$$



            $$P land bot Leftrightarrow bot$$



            Identity



            $$P land top Leftrightarrow P$$



            $$P lor bot Leftrightarrow P$$



            Idempotence



            $$P lor P = P$$



            $$P land P = P$$



            Also, as you noticed, the whole big right terms does indeed not get you anywhere ... you need to work in the left term $neg P lor R$



            So, starting a few lines from before you get 'stuck' (because indeed, you're just going in loops at that point) (and also throwing in some necessary parentheses):



            $(neg P lor R) land [color{red}((neg P lor Q) land (P lor neg Q)color{red}) lor color{red}((neg R lor Q) land (R lor neg Q)color{red})] =$



            $(neg P land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) lor (R land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) =$



            $[neg P land ((neg P lor Q) land (P lor neg Q))] lor [neg P land ((neg R lor Q) land (R lor neg Q))] lor [R land ((neg P lor Q) land (P lor neg Q))] lor [R land ((neg R lor Q) land (R lor neg Q))] =$



            (dropping unncessary parentheses)



            $[neg P land (neg P lor Q) land (P lor neg Q)] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land (neg R lor Q) land (R lor neg Q)]$



            OK, now two handy laws are:



            Absorption



            $$P land (P lor Q) = P$$



            Reduction



            $$P land (neg P lor Q) = P land Q$$



            Applying these, we get:



            $[neg P land neg Q] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land Q ]$



            OK, and now 'unDistribute' the $neg P $ and the $R$:



            $= [neg P land (neg Q lor ((neg R lor Q) land (R lor neg Q)))] lor [R land (((neg P lor Q) land (P lor neg Q)) lor Q) ]$



            and now you can distribute the $neg Q$ and the $Q$:



            $= [neg P land (neg Q lor (neg R lor Q)) land (neg Q lor (R lor neg Q))] lor [R land ((neg P lor Q) lor Q) land ((P lor neg Q) lor Q) ] =$



            (dropping unncessary parentheses)



            $[neg P land (neg Q lor neg R lor Q) land (neg Q lor R lor neg Q)] lor [R land (neg P lor Q lor Q) land (P lor neg Q lor Q) ]$



            And now you can use those simplification laws from the start of my post:



            (Complement:)



            $[neg P land (neg R lor top) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor top) ]$



            (Annihilation:)



            $=[neg P land top land (R lor neg Q)] lor [R land (neg P lor Q) land top ]$



            (Identity:)



            $=[neg P land (R lor neg Q)] lor [R land (neg P lor Q)]$



            (Distribution:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land neg P) lor (R land Q)$



            (Commutation:)



            $=(neg P land R) lor (neg P land neg Q) lor (neg P land R) lor (R land Q)$



            (Idempotence:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land Q)$



            (Distribution 2*2*2:)



            $=(neg P lor neg P lor R) land (neg P lor neg Q lor R) land (neg P lor neg P lor Q) land (neg P lor neg Q lor Q) land (R lor neg P lor R) land (R lor neg Q lor R) land (R lor neg P lor Q) land (R lor neg Q lor Q)$



            (Complement:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor top) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land (R lor top)$



            (Annihilation:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land top land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land top$



            (Identity:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) $



            (two Absorptions and an Idempotence:)



            $=(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            Phew! Almost there ....



            Now, use:



            Adjacency



            $$P = (P lor Q) land (P lor neg Q)$$



            Applied to where we were:



            $(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            (Adjacency:)



            $=(neg P lor R lor Q) land (neg P lor R lor neg Q) land (neg P lor Q) land (neg Q lor R)$



            (Two Absorptions)



            $(neg P lor Q) land (neg Q lor R)$



            .. and finally we're there! Sheesh!






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Comments are not for extended discussion; this conversation has been moved to chat.
              $endgroup$
              – Aloizio Macedo
              Jan 30 at 17:21














            1












            1








            1





            $begingroup$

            Here are some useful but elementary equivalence principles:



            Complement



            $$P lor neg P Leftrightarrow top$$



            $$P land neg P Leftrightarrow bot$$



            Annihilation



            $$P lor top Leftrightarrow top$$



            $$P land bot Leftrightarrow bot$$



            Identity



            $$P land top Leftrightarrow P$$



            $$P lor bot Leftrightarrow P$$



            Idempotence



            $$P lor P = P$$



            $$P land P = P$$



            Also, as you noticed, the whole big right terms does indeed not get you anywhere ... you need to work in the left term $neg P lor R$



            So, starting a few lines from before you get 'stuck' (because indeed, you're just going in loops at that point) (and also throwing in some necessary parentheses):



            $(neg P lor R) land [color{red}((neg P lor Q) land (P lor neg Q)color{red}) lor color{red}((neg R lor Q) land (R lor neg Q)color{red})] =$



            $(neg P land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) lor (R land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) =$



            $[neg P land ((neg P lor Q) land (P lor neg Q))] lor [neg P land ((neg R lor Q) land (R lor neg Q))] lor [R land ((neg P lor Q) land (P lor neg Q))] lor [R land ((neg R lor Q) land (R lor neg Q))] =$



            (dropping unncessary parentheses)



            $[neg P land (neg P lor Q) land (P lor neg Q)] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land (neg R lor Q) land (R lor neg Q)]$



            OK, now two handy laws are:



            Absorption



            $$P land (P lor Q) = P$$



            Reduction



            $$P land (neg P lor Q) = P land Q$$



            Applying these, we get:



            $[neg P land neg Q] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land Q ]$



            OK, and now 'unDistribute' the $neg P $ and the $R$:



            $= [neg P land (neg Q lor ((neg R lor Q) land (R lor neg Q)))] lor [R land (((neg P lor Q) land (P lor neg Q)) lor Q) ]$



            and now you can distribute the $neg Q$ and the $Q$:



            $= [neg P land (neg Q lor (neg R lor Q)) land (neg Q lor (R lor neg Q))] lor [R land ((neg P lor Q) lor Q) land ((P lor neg Q) lor Q) ] =$



            (dropping unncessary parentheses)



            $[neg P land (neg Q lor neg R lor Q) land (neg Q lor R lor neg Q)] lor [R land (neg P lor Q lor Q) land (P lor neg Q lor Q) ]$



            And now you can use those simplification laws from the start of my post:



            (Complement:)



            $[neg P land (neg R lor top) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor top) ]$



            (Annihilation:)



            $=[neg P land top land (R lor neg Q)] lor [R land (neg P lor Q) land top ]$



            (Identity:)



            $=[neg P land (R lor neg Q)] lor [R land (neg P lor Q)]$



            (Distribution:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land neg P) lor (R land Q)$



            (Commutation:)



            $=(neg P land R) lor (neg P land neg Q) lor (neg P land R) lor (R land Q)$



            (Idempotence:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land Q)$



            (Distribution 2*2*2:)



            $=(neg P lor neg P lor R) land (neg P lor neg Q lor R) land (neg P lor neg P lor Q) land (neg P lor neg Q lor Q) land (R lor neg P lor R) land (R lor neg Q lor R) land (R lor neg P lor Q) land (R lor neg Q lor Q)$



            (Complement:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor top) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land (R lor top)$



            (Annihilation:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land top land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land top$



            (Identity:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) $



            (two Absorptions and an Idempotence:)



            $=(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            Phew! Almost there ....



            Now, use:



            Adjacency



            $$P = (P lor Q) land (P lor neg Q)$$



            Applied to where we were:



            $(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            (Adjacency:)



            $=(neg P lor R lor Q) land (neg P lor R lor neg Q) land (neg P lor Q) land (neg Q lor R)$



            (Two Absorptions)



            $(neg P lor Q) land (neg Q lor R)$



            .. and finally we're there! Sheesh!






            share|cite|improve this answer











            $endgroup$



            Here are some useful but elementary equivalence principles:



            Complement



            $$P lor neg P Leftrightarrow top$$



            $$P land neg P Leftrightarrow bot$$



            Annihilation



            $$P lor top Leftrightarrow top$$



            $$P land bot Leftrightarrow bot$$



            Identity



            $$P land top Leftrightarrow P$$



            $$P lor bot Leftrightarrow P$$



            Idempotence



            $$P lor P = P$$



            $$P land P = P$$



            Also, as you noticed, the whole big right terms does indeed not get you anywhere ... you need to work in the left term $neg P lor R$



            So, starting a few lines from before you get 'stuck' (because indeed, you're just going in loops at that point) (and also throwing in some necessary parentheses):



            $(neg P lor R) land [color{red}((neg P lor Q) land (P lor neg Q)color{red}) lor color{red}((neg R lor Q) land (R lor neg Q)color{red})] =$



            $(neg P land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) lor (R land [((neg P lor Q) land (P lor neg Q)) lor ((neg R lor Q) land (R lor neg Q))]) =$



            $[neg P land ((neg P lor Q) land (P lor neg Q))] lor [neg P land ((neg R lor Q) land (R lor neg Q))] lor [R land ((neg P lor Q) land (P lor neg Q))] lor [R land ((neg R lor Q) land (R lor neg Q))] =$



            (dropping unncessary parentheses)



            $[neg P land (neg P lor Q) land (P lor neg Q)] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land (neg R lor Q) land (R lor neg Q)]$



            OK, now two handy laws are:



            Absorption



            $$P land (P lor Q) = P$$



            Reduction



            $$P land (neg P lor Q) = P land Q$$



            Applying these, we get:



            $[neg P land neg Q] lor [neg P land (neg R lor Q) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor neg Q)] lor [R land Q ]$



            OK, and now 'unDistribute' the $neg P $ and the $R$:



            $= [neg P land (neg Q lor ((neg R lor Q) land (R lor neg Q)))] lor [R land (((neg P lor Q) land (P lor neg Q)) lor Q) ]$



            and now you can distribute the $neg Q$ and the $Q$:



            $= [neg P land (neg Q lor (neg R lor Q)) land (neg Q lor (R lor neg Q))] lor [R land ((neg P lor Q) lor Q) land ((P lor neg Q) lor Q) ] =$



            (dropping unncessary parentheses)



            $[neg P land (neg Q lor neg R lor Q) land (neg Q lor R lor neg Q)] lor [R land (neg P lor Q lor Q) land (P lor neg Q lor Q) ]$



            And now you can use those simplification laws from the start of my post:



            (Complement:)



            $[neg P land (neg R lor top) land (R lor neg Q)] lor [R land (neg P lor Q) land (P lor top) ]$



            (Annihilation:)



            $=[neg P land top land (R lor neg Q)] lor [R land (neg P lor Q) land top ]$



            (Identity:)



            $=[neg P land (R lor neg Q)] lor [R land (neg P lor Q)]$



            (Distribution:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land neg P) lor (R land Q)$



            (Commutation:)



            $=(neg P land R) lor (neg P land neg Q) lor (neg P land R) lor (R land Q)$



            (Idempotence:)



            $=(neg P land R) lor (neg P land neg Q) lor (R land Q)$



            (Distribution 2*2*2:)



            $=(neg P lor neg P lor R) land (neg P lor neg Q lor R) land (neg P lor neg P lor Q) land (neg P lor neg Q lor Q) land (R lor neg P lor R) land (R lor neg Q lor R) land (R lor neg P lor Q) land (R lor neg Q lor Q)$



            (Complement:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor top) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land (R lor top)$



            (Annihilation:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land top land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) land top$



            (Identity:)



            $=(neg P lor R) land (neg P lor neg Q lor R) land (neg P lor Q) land (neg P lor R) land (neg Q lor R) land (R lor neg P lor Q) $



            (two Absorptions and an Idempotence:)



            $=(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            Phew! Almost there ....



            Now, use:



            Adjacency



            $$P = (P lor Q) land (P lor neg Q)$$



            Applied to where we were:



            $(neg P lor R) land (neg P lor Q) land (neg Q lor R)$



            (Adjacency:)



            $=(neg P lor R lor Q) land (neg P lor R lor neg Q) land (neg P lor Q) land (neg Q lor R)$



            (Two Absorptions)



            $(neg P lor Q) land (neg Q lor R)$



            .. and finally we're there! Sheesh!







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 30 at 16:05

























            answered Jan 29 at 19:27









            Bram28Bram28

            64k44793




            64k44793












            • $begingroup$
              Comments are not for extended discussion; this conversation has been moved to chat.
              $endgroup$
              – Aloizio Macedo
              Jan 30 at 17:21


















            • $begingroup$
              Comments are not for extended discussion; this conversation has been moved to chat.
              $endgroup$
              – Aloizio Macedo
              Jan 30 at 17:21
















            $begingroup$
            Comments are not for extended discussion; this conversation has been moved to chat.
            $endgroup$
            – Aloizio Macedo
            Jan 30 at 17:21




            $begingroup$
            Comments are not for extended discussion; this conversation has been moved to chat.
            $endgroup$
            – Aloizio Macedo
            Jan 30 at 17:21











            0












            $begingroup$

            Your approach - which I continued in my first Answer - effectively puts the statements into their CNF ... which is what you were trying to avoid.



            So, I figure I would give an Alternative answer, working with the whole conditionals, rather than breaking the statements down all the way to literals.



            Now, this is going to require some equivalence principles involving conditionals. Notice that in my other answer I showed that



            $$(neg P lor R) land (neg P lor Q) land (neg Q lor R) = (neg P lor Q) land (neg Q lor R)$$



            This equivalence is actually known to be the Consensus Theorem, which also has a conditional form:



            Conditional Consensus



            $$(P rightarrow R) land (P rightarrow Q) land (Q rightarrow R) = (P rightarrow Q) land (Q rightarrow R)$$



            OK, that's the key equivalence I'll be using, but I want one more, which is:



            Conditional Tautology



            $$(P rightarrow Q) lor (Q rightarrow R) = top$$



            OK, with that, here goes:



            $(P rightarrow R) land ((P leftrightarrow Q) lor (Q leftrightarrow R))=$



            (Work out biconditional as two conditionals:)



            $(P rightarrow R) land (((P rightarrow Q) land (Q rightarrow P)) lor ((Q rightarrow R) land (R rightarrow Q)))=$



            (DIstribution of $P rightarrow R$:)



            $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q))=$



            (Consensus Conditional form!)



            $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P) land (Q rightarrow R)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q) land (P rightarrow Q))$



            (Undistribution of three terms in common:)



            $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow R)) land ((Q rightarrow P) lor (R rightarrow Q))=$



            (conditional Consensus and Conditional Tautology:)



            $((P rightarrow Q) land (Q rightarrow R)) land top=$



            $(P rightarrow Q) land (Q rightarrow R)$



            Ah, much better!






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Your approach - which I continued in my first Answer - effectively puts the statements into their CNF ... which is what you were trying to avoid.



              So, I figure I would give an Alternative answer, working with the whole conditionals, rather than breaking the statements down all the way to literals.



              Now, this is going to require some equivalence principles involving conditionals. Notice that in my other answer I showed that



              $$(neg P lor R) land (neg P lor Q) land (neg Q lor R) = (neg P lor Q) land (neg Q lor R)$$



              This equivalence is actually known to be the Consensus Theorem, which also has a conditional form:



              Conditional Consensus



              $$(P rightarrow R) land (P rightarrow Q) land (Q rightarrow R) = (P rightarrow Q) land (Q rightarrow R)$$



              OK, that's the key equivalence I'll be using, but I want one more, which is:



              Conditional Tautology



              $$(P rightarrow Q) lor (Q rightarrow R) = top$$



              OK, with that, here goes:



              $(P rightarrow R) land ((P leftrightarrow Q) lor (Q leftrightarrow R))=$



              (Work out biconditional as two conditionals:)



              $(P rightarrow R) land (((P rightarrow Q) land (Q rightarrow P)) lor ((Q rightarrow R) land (R rightarrow Q)))=$



              (DIstribution of $P rightarrow R$:)



              $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q))=$



              (Consensus Conditional form!)



              $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P) land (Q rightarrow R)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q) land (P rightarrow Q))$



              (Undistribution of three terms in common:)



              $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow R)) land ((Q rightarrow P) lor (R rightarrow Q))=$



              (conditional Consensus and Conditional Tautology:)



              $((P rightarrow Q) land (Q rightarrow R)) land top=$



              $(P rightarrow Q) land (Q rightarrow R)$



              Ah, much better!






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Your approach - which I continued in my first Answer - effectively puts the statements into their CNF ... which is what you were trying to avoid.



                So, I figure I would give an Alternative answer, working with the whole conditionals, rather than breaking the statements down all the way to literals.



                Now, this is going to require some equivalence principles involving conditionals. Notice that in my other answer I showed that



                $$(neg P lor R) land (neg P lor Q) land (neg Q lor R) = (neg P lor Q) land (neg Q lor R)$$



                This equivalence is actually known to be the Consensus Theorem, which also has a conditional form:



                Conditional Consensus



                $$(P rightarrow R) land (P rightarrow Q) land (Q rightarrow R) = (P rightarrow Q) land (Q rightarrow R)$$



                OK, that's the key equivalence I'll be using, but I want one more, which is:



                Conditional Tautology



                $$(P rightarrow Q) lor (Q rightarrow R) = top$$



                OK, with that, here goes:



                $(P rightarrow R) land ((P leftrightarrow Q) lor (Q leftrightarrow R))=$



                (Work out biconditional as two conditionals:)



                $(P rightarrow R) land (((P rightarrow Q) land (Q rightarrow P)) lor ((Q rightarrow R) land (R rightarrow Q)))=$



                (DIstribution of $P rightarrow R$:)



                $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q))=$



                (Consensus Conditional form!)



                $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P) land (Q rightarrow R)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q) land (P rightarrow Q))$



                (Undistribution of three terms in common:)



                $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow R)) land ((Q rightarrow P) lor (R rightarrow Q))=$



                (conditional Consensus and Conditional Tautology:)



                $((P rightarrow Q) land (Q rightarrow R)) land top=$



                $(P rightarrow Q) land (Q rightarrow R)$



                Ah, much better!






                share|cite|improve this answer









                $endgroup$



                Your approach - which I continued in my first Answer - effectively puts the statements into their CNF ... which is what you were trying to avoid.



                So, I figure I would give an Alternative answer, working with the whole conditionals, rather than breaking the statements down all the way to literals.



                Now, this is going to require some equivalence principles involving conditionals. Notice that in my other answer I showed that



                $$(neg P lor R) land (neg P lor Q) land (neg Q lor R) = (neg P lor Q) land (neg Q lor R)$$



                This equivalence is actually known to be the Consensus Theorem, which also has a conditional form:



                Conditional Consensus



                $$(P rightarrow R) land (P rightarrow Q) land (Q rightarrow R) = (P rightarrow Q) land (Q rightarrow R)$$



                OK, that's the key equivalence I'll be using, but I want one more, which is:



                Conditional Tautology



                $$(P rightarrow Q) lor (Q rightarrow R) = top$$



                OK, with that, here goes:



                $(P rightarrow R) land ((P leftrightarrow Q) lor (Q leftrightarrow R))=$



                (Work out biconditional as two conditionals:)



                $(P rightarrow R) land (((P rightarrow Q) land (Q rightarrow P)) lor ((Q rightarrow R) land (R rightarrow Q)))=$



                (DIstribution of $P rightarrow R$:)



                $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q))=$



                (Consensus Conditional form!)



                $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow P) land (Q rightarrow R)) lor ((P rightarrow R) land (Q rightarrow R) land (R rightarrow Q) land (P rightarrow Q))$



                (Undistribution of three terms in common:)



                $((P rightarrow R) land (P rightarrow Q) land (Q rightarrow R)) land ((Q rightarrow P) lor (R rightarrow Q))=$



                (conditional Consensus and Conditional Tautology:)



                $((P rightarrow Q) land (Q rightarrow R)) land top=$



                $(P rightarrow Q) land (Q rightarrow R)$



                Ah, much better!







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 29 at 22:41









                Bram28Bram28

                64k44793




                64k44793






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092595%2fassistance-in-completing-the-proof-p-%25e2%2586%2592-q%25e2%2588%25a7q-%25e2%2586%2592-r-is-equivalent-to-p-%25e2%2586%2592-r%25e2%2588%25a7%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$