Derivate of the cofactor and the determinant












2












$begingroup$


$newcommand{Cof}{operatorname{Cof}}$
$newcommand{Det}{operatorname{Det}}$
$newcommand{id}{operatorname{Id}}$
$newcommand{tr}{operatorname{Tr}}$



Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.



By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets



$$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$



(The derivative of the determinant is known as Jacobi's formula).



From this, at least in the case when $A$ is invertible we can deduce that



$$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence



$$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$



Questions:




  1. Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?


  2. Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)



Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $



This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    $newcommand{Cof}{operatorname{Cof}}$
    $newcommand{Det}{operatorname{Det}}$
    $newcommand{id}{operatorname{Id}}$
    $newcommand{tr}{operatorname{Tr}}$



    Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.



    By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets



    $$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$



    (The derivative of the determinant is known as Jacobi's formula).



    From this, at least in the case when $A$ is invertible we can deduce that



    $$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence



    $$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$



    Questions:




    1. Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?


    2. Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)



    Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $



    This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      $newcommand{Cof}{operatorname{Cof}}$
      $newcommand{Det}{operatorname{Det}}$
      $newcommand{id}{operatorname{Id}}$
      $newcommand{tr}{operatorname{Tr}}$



      Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.



      By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets



      $$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$



      (The derivative of the determinant is known as Jacobi's formula).



      From this, at least in the case when $A$ is invertible we can deduce that



      $$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence



      $$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$



      Questions:




      1. Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?


      2. Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)



      Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $



      This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.










      share|cite|improve this question









      $endgroup$




      $newcommand{Cof}{operatorname{Cof}}$
      $newcommand{Det}{operatorname{Det}}$
      $newcommand{id}{operatorname{Id}}$
      $newcommand{tr}{operatorname{Tr}}$



      Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.



      By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets



      $$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$



      (The derivative of the determinant is known as Jacobi's formula).



      From this, at least in the case when $A$ is invertible we can deduce that



      $$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence



      $$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$



      Questions:




      1. Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?


      2. Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)



      Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $



      This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.







      linear-algebra geometry determinant matrix-calculus exterior-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 9 '17 at 14:56









      Asaf ShacharAsaf Shachar

      5,79031145




      5,79031145






















          2 Answers
          2






          active

          oldest

          votes


















          1





          +50







          $begingroup$

          Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.



          Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.



          Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.



          $Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$



          $(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
          (-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$



          By the matrix determinant lemma,



          $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$



          $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$



          $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$



          $=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.



          Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.



          Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
            $endgroup$
            – Asaf Shachar
            Feb 13 '17 at 16:40












          • $begingroup$
            $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
            $endgroup$
            – Daniel
            Feb 13 '17 at 16:42












          • $begingroup$
            If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
            $endgroup$
            – Daniel
            Feb 13 '17 at 16:54










          • $begingroup$
            You are right. Thanks again!
            $endgroup$
            – Asaf Shachar
            Feb 13 '17 at 17:00










          • $begingroup$
            You are welcome.
            $endgroup$
            – Daniel
            Feb 13 '17 at 17:03



















          1












          $begingroup$

          As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes



          $$ big(d(operatorname{Cof})_A(B)big)^T A=0$$



          However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:



          Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2136747%2fderivate-of-the-cofactor-and-the-determinant%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1





            +50







            $begingroup$

            Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.



            Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.



            Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.



            $Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$



            $(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
            (-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$



            By the matrix determinant lemma,



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$



            $=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.



            Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.



            Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 16:40












            • $begingroup$
              $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:42












            • $begingroup$
              If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:54










            • $begingroup$
              You are right. Thanks again!
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 17:00










            • $begingroup$
              You are welcome.
              $endgroup$
              – Daniel
              Feb 13 '17 at 17:03
















            1





            +50







            $begingroup$

            Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.



            Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.



            Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.



            $Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$



            $(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
            (-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$



            By the matrix determinant lemma,



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$



            $=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.



            Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.



            Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 16:40












            • $begingroup$
              $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:42












            • $begingroup$
              If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:54










            • $begingroup$
              You are right. Thanks again!
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 17:00










            • $begingroup$
              You are welcome.
              $endgroup$
              – Daniel
              Feb 13 '17 at 17:03














            1





            +50







            1





            +50



            1




            +50



            $begingroup$

            Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.



            Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.



            Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.



            $Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$



            $(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
            (-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$



            By the matrix determinant lemma,



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$



            $=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.



            Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.



            Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.






            share|cite|improve this answer









            $endgroup$



            Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.



            Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.



            Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.



            $Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$



            $(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
            (-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$



            By the matrix determinant lemma,



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$



            $=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$



            $=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.



            Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.



            Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 13 '17 at 16:33









            DanielDaniel

            4,19911022




            4,19911022












            • $begingroup$
              Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 16:40












            • $begingroup$
              $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:42












            • $begingroup$
              If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:54










            • $begingroup$
              You are right. Thanks again!
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 17:00










            • $begingroup$
              You are welcome.
              $endgroup$
              – Daniel
              Feb 13 '17 at 17:03


















            • $begingroup$
              Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 16:40












            • $begingroup$
              $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:42












            • $begingroup$
              If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
              $endgroup$
              – Daniel
              Feb 13 '17 at 16:54










            • $begingroup$
              You are right. Thanks again!
              $endgroup$
              – Asaf Shachar
              Feb 13 '17 at 17:00










            • $begingroup$
              You are welcome.
              $endgroup$
              – Daniel
              Feb 13 '17 at 17:03
















            $begingroup$
            Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
            $endgroup$
            – Asaf Shachar
            Feb 13 '17 at 16:40






            $begingroup$
            Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
            $endgroup$
            – Asaf Shachar
            Feb 13 '17 at 16:40














            $begingroup$
            $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
            $endgroup$
            – Daniel
            Feb 13 '17 at 16:42






            $begingroup$
            $Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
            $endgroup$
            – Daniel
            Feb 13 '17 at 16:42














            $begingroup$
            If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
            $endgroup$
            – Daniel
            Feb 13 '17 at 16:54




            $begingroup$
            If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
            $endgroup$
            – Daniel
            Feb 13 '17 at 16:54












            $begingroup$
            You are right. Thanks again!
            $endgroup$
            – Asaf Shachar
            Feb 13 '17 at 17:00




            $begingroup$
            You are right. Thanks again!
            $endgroup$
            – Asaf Shachar
            Feb 13 '17 at 17:00












            $begingroup$
            You are welcome.
            $endgroup$
            – Daniel
            Feb 13 '17 at 17:03




            $begingroup$
            You are welcome.
            $endgroup$
            – Daniel
            Feb 13 '17 at 17:03











            1












            $begingroup$

            As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes



            $$ big(d(operatorname{Cof})_A(B)big)^T A=0$$



            However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:



            Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes



              $$ big(d(operatorname{Cof})_A(B)big)^T A=0$$



              However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:



              Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes



                $$ big(d(operatorname{Cof})_A(B)big)^T A=0$$



                However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:



                Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.






                share|cite|improve this answer











                $endgroup$



                As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes



                $$ big(d(operatorname{Cof})_A(B)big)^T A=0$$



                However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:



                Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 29 at 17:00


























                community wiki





                2 revs, 2 users 92%
                Asaf Shachar































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2136747%2fderivate-of-the-cofactor-and-the-determinant%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    Npm cannot find a required file even through it is in the searched directory