Derivate of the cofactor and the determinant
$begingroup$
$newcommand{Cof}{operatorname{Cof}}$
$newcommand{Det}{operatorname{Det}}$
$newcommand{id}{operatorname{Id}}$
$newcommand{tr}{operatorname{Tr}}$
Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.
By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets
$$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$
(The derivative of the determinant is known as Jacobi's formula).
From this, at least in the case when $A$ is invertible we can deduce that
$$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence
$$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$
Questions:
Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?
Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)
Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $
This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.
linear-algebra geometry determinant matrix-calculus exterior-algebra
$endgroup$
add a comment |
$begingroup$
$newcommand{Cof}{operatorname{Cof}}$
$newcommand{Det}{operatorname{Det}}$
$newcommand{id}{operatorname{Id}}$
$newcommand{tr}{operatorname{Tr}}$
Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.
By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets
$$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$
(The derivative of the determinant is known as Jacobi's formula).
From this, at least in the case when $A$ is invertible we can deduce that
$$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence
$$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$
Questions:
Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?
Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)
Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $
This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.
linear-algebra geometry determinant matrix-calculus exterior-algebra
$endgroup$
add a comment |
$begingroup$
$newcommand{Cof}{operatorname{Cof}}$
$newcommand{Det}{operatorname{Det}}$
$newcommand{id}{operatorname{Id}}$
$newcommand{tr}{operatorname{Tr}}$
Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.
By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets
$$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$
(The derivative of the determinant is known as Jacobi's formula).
From this, at least in the case when $A$ is invertible we can deduce that
$$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence
$$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$
Questions:
Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?
Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)
Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $
This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.
linear-algebra geometry determinant matrix-calculus exterior-algebra
$endgroup$
$newcommand{Cof}{operatorname{Cof}}$
$newcommand{Det}{operatorname{Det}}$
$newcommand{id}{operatorname{Id}}$
$newcommand{tr}{operatorname{Tr}}$
Let $A(t)$ be a smooth path in $M_d(mathbb{R})$, $A(0)=A,dot A(0)=B$.
By differentiation the identity $(Cof A)^T circ A=Det A cdot id$, one gets
$$(*) , , big(d(Cof)_A(B)big)^T circ A + (Cof A)^T circ B = tr (Cof A)^T B) cdot id= langle Cof A , Brangle cdot id$$
(The derivative of the determinant is known as Jacobi's formula).
From this, at least in the case when $A$ is invertible we can deduce that
$$ big(d(Cof)_A(B)big)^T = big(langle Cof A , Brangle cdot id -(Cof A)^T circ B big)A^{-1},$$ hence
$$ d(Cof)_A(B) = (A^{T})^{-1}big(langle Cof A , Brangle cdot id - B^T circ Cof A big) $$
Questions:
Does equation $(*)$ uniquely determine $d(Cof)_A(B)$ even when $A$ is singular? Is there a closed formula for $d(Cof)_A(B)$ in this case?
Is there a more "direct way" to calculate $d(Cof)_A(B)$? (without relying on Jacobi's formula)
Remark: As a corollary from $(*)$ we get $ tr bigg( big(d(Cof)_A(B)big)^T circ A bigg) = (d-1) tr (Cof A)^T B) $
This is interesting since the cofactor essentially measures the action of the linear map $A$ on $d-1$ dimensional parallelepiped, so maybe there is a "geometric" way to see this immediately.
linear-algebra geometry determinant matrix-calculus exterior-algebra
linear-algebra geometry determinant matrix-calculus exterior-algebra
asked Feb 9 '17 at 14:56


Asaf ShacharAsaf Shachar
5,79031145
5,79031145
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.
Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.
Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.
$Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$
$(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
(-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$
By the matrix determinant lemma,
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$
$=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.
Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.
Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.
$endgroup$
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
add a comment |
$begingroup$
As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes
$$ big(d(operatorname{Cof})_A(B)big)^T A=0$$
However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:
Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2136747%2fderivate-of-the-cofactor-and-the-determinant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.
Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.
Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.
$Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$
$(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
(-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$
By the matrix determinant lemma,
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$
$=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.
Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.
Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.
$endgroup$
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
add a comment |
$begingroup$
Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.
Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.
Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.
$Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$
$(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
(-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$
By the matrix determinant lemma,
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$
$=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.
Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.
Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.
$endgroup$
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
add a comment |
$begingroup$
Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.
Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.
Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.
$Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$
$(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
(-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$
By the matrix determinant lemma,
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$
$=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.
Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.
Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.
$endgroup$
Let $Cof_{ij}(A)=(-1)^{i+j}det(Delta_{ij}(A))$, where $Delta_{ij}(A)$ is the submatrix obtained from $A$ by deleting row $i$ and column $j$. Notice that $Delta_{ij}(cdot)$ is a linear transformation. Let $Adj(D)$ be the adjugate matrix of $D$.
Let ${e_1,ldots,e_d}$ be the canonical basis of $mathbb{R}^d$.
Now, $d(Cof)_A(e_me_n^t)=lim_{hrightarrow 0}dfrac{Cof(A+h e_me_n^t)-Cof(A)}{h}$.
$Cof_{ij}(A+h e_me_n^t)=(-1)^{i+j}det(Delta_{ij}(A+h e_me_n^t))=$
$(-1)^{i+j}det(Delta_{ij}(A)+h Delta_{ij}(e_me_n^t))=
(-1)^{i+j}det(Delta_{ij}(A)+h uv^t)=$
By the matrix determinant lemma,
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h (v^tAdj(Delta_{ij}(A))u)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))uv^t)$
$=(-1)^{i+j}det(Delta_{ij}(A))+(-1)^{i+j}h tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$
$=Cof_{ij}(A)+h (-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t))$.
Thus, $d(Cof)_A(e_me_n^t)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(e_me_n^t)))_{i,j}$.
Since $B=sum_{m,n=1}^db_{m,n}e_me_n^t$ then $d(Cof)_A(B)=((-1)^{i+j} tr(Adj(Delta_{ij}(A))Delta_{ij}(B)))_{i,j}$.
answered Feb 13 '17 at 16:33
DanielDaniel
4,19911022
4,19911022
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
add a comment |
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
Thanks. I do not understand some details, though: What are $u,v$ (perhaps $e_i,e_j$)? Also, do you know if my equation $(*)$ determines $d(Cof)_A(B)$ when $A$ is singular?
$endgroup$
– Asaf Shachar
Feb 13 '17 at 16:40
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
$Delta_{ij}(e_{m}e_n^t)$ is a rank one matrix. I called it $uv^t$. Let me think about your second question.
$endgroup$
– Daniel
Feb 13 '17 at 16:42
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
If $rank(A)leq d-2$ then $Cof(A)=0$ and your formula becomes $big(d(Cof)_A(B)big)^t circ A =0$. I cannot see a way to determine $big(d(Cof)_A(B)big)^t $ from the equality $XA=0$, there are infinitely many solutions.
$endgroup$
– Daniel
Feb 13 '17 at 16:54
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are right. Thanks again!
$endgroup$
– Asaf Shachar
Feb 13 '17 at 17:00
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
$begingroup$
You are welcome.
$endgroup$
– Daniel
Feb 13 '17 at 17:03
add a comment |
$begingroup$
As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes
$$ big(d(operatorname{Cof})_A(B)big)^T A=0$$
However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:
Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.
$endgroup$
add a comment |
$begingroup$
As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes
$$ big(d(operatorname{Cof})_A(B)big)^T A=0$$
However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:
Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.
$endgroup$
add a comment |
$begingroup$
As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes
$$ big(d(operatorname{Cof})_A(B)big)^T A=0$$
However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:
Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.
$endgroup$
As mentioned by Daniel, when $operatorname{rank}(A) le d-2$, $operatorname{Cof}(A)=0$, hence equation $(*)$ becomes
$$ big(d(operatorname{Cof})_A(B)big)^T A=0$$
However, the equation $XA=0$ has infinitely many solutions, as can be seen as follows:
Look at the linear map $T:M_d to M_d$, defined by $T(X)=X^TA$. $T$ is not surjective, since every matrix in its image has rank smaller than $d-1$. Thus, $T$ is not injective.
edited Jan 29 at 17:00
community wiki
2 revs, 2 users 92%
Asaf Shachar
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2136747%2fderivate-of-the-cofactor-and-the-determinant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown