Determining $N$ when calculating a fourier series
$begingroup$
calculate the Fourier series of the $2pi$-periodic continuation of
$$f(t):=t, quad tin[0,2pi)$$
Now we have in general:
$$hat{hat{f}}(t)=sum_{k=-N} ^Nc_k e^{-ikt},quad c_k=frac{1}{2pi}int_{-pi}^pi f(x) e^{-ikt}dt$$
So we get
$int_{-pi}^pi te^{-ikt}dt=frac{-1}{ik}t|_{-pi}^pi-int_{-pi}^pi frac{-1}{ik}e^{-ikt}dt=frac{-2pi}{ik}-underbrace{(frac{-1}{ik})^2e^{-ikt}|_{-pi}^pi}_{=0}=frac{-2pi}{ik}=frac{2pi i}{k}$
so we get
$$c_k=frac{i}{k},quad forall k$$
So we get
$$hat{hat{f}}=sum_{k=-N}^N frac{i}{k}e^{-ikt}$$
Now I am a bit confused to what $N$ now exactly is and how I can "choose" it, like when is it infinity? Sometimes I also see that the sum goes from $k=1$ to $infty$ or from $-infty$ to $+infty$. How do I know which case it is?
Also: Shouldn't I have a vertical scaling term? Something like $hat{hat{f}}=frac{a_0}{2}+sum_{k=-N}^Nc_ke^{-ikt}$?
fourier-series
$endgroup$
add a comment |
$begingroup$
calculate the Fourier series of the $2pi$-periodic continuation of
$$f(t):=t, quad tin[0,2pi)$$
Now we have in general:
$$hat{hat{f}}(t)=sum_{k=-N} ^Nc_k e^{-ikt},quad c_k=frac{1}{2pi}int_{-pi}^pi f(x) e^{-ikt}dt$$
So we get
$int_{-pi}^pi te^{-ikt}dt=frac{-1}{ik}t|_{-pi}^pi-int_{-pi}^pi frac{-1}{ik}e^{-ikt}dt=frac{-2pi}{ik}-underbrace{(frac{-1}{ik})^2e^{-ikt}|_{-pi}^pi}_{=0}=frac{-2pi}{ik}=frac{2pi i}{k}$
so we get
$$c_k=frac{i}{k},quad forall k$$
So we get
$$hat{hat{f}}=sum_{k=-N}^N frac{i}{k}e^{-ikt}$$
Now I am a bit confused to what $N$ now exactly is and how I can "choose" it, like when is it infinity? Sometimes I also see that the sum goes from $k=1$ to $infty$ or from $-infty$ to $+infty$. How do I know which case it is?
Also: Shouldn't I have a vertical scaling term? Something like $hat{hat{f}}=frac{a_0}{2}+sum_{k=-N}^Nc_ke^{-ikt}$?
fourier-series
$endgroup$
add a comment |
$begingroup$
calculate the Fourier series of the $2pi$-periodic continuation of
$$f(t):=t, quad tin[0,2pi)$$
Now we have in general:
$$hat{hat{f}}(t)=sum_{k=-N} ^Nc_k e^{-ikt},quad c_k=frac{1}{2pi}int_{-pi}^pi f(x) e^{-ikt}dt$$
So we get
$int_{-pi}^pi te^{-ikt}dt=frac{-1}{ik}t|_{-pi}^pi-int_{-pi}^pi frac{-1}{ik}e^{-ikt}dt=frac{-2pi}{ik}-underbrace{(frac{-1}{ik})^2e^{-ikt}|_{-pi}^pi}_{=0}=frac{-2pi}{ik}=frac{2pi i}{k}$
so we get
$$c_k=frac{i}{k},quad forall k$$
So we get
$$hat{hat{f}}=sum_{k=-N}^N frac{i}{k}e^{-ikt}$$
Now I am a bit confused to what $N$ now exactly is and how I can "choose" it, like when is it infinity? Sometimes I also see that the sum goes from $k=1$ to $infty$ or from $-infty$ to $+infty$. How do I know which case it is?
Also: Shouldn't I have a vertical scaling term? Something like $hat{hat{f}}=frac{a_0}{2}+sum_{k=-N}^Nc_ke^{-ikt}$?
fourier-series
$endgroup$
calculate the Fourier series of the $2pi$-periodic continuation of
$$f(t):=t, quad tin[0,2pi)$$
Now we have in general:
$$hat{hat{f}}(t)=sum_{k=-N} ^Nc_k e^{-ikt},quad c_k=frac{1}{2pi}int_{-pi}^pi f(x) e^{-ikt}dt$$
So we get
$int_{-pi}^pi te^{-ikt}dt=frac{-1}{ik}t|_{-pi}^pi-int_{-pi}^pi frac{-1}{ik}e^{-ikt}dt=frac{-2pi}{ik}-underbrace{(frac{-1}{ik})^2e^{-ikt}|_{-pi}^pi}_{=0}=frac{-2pi}{ik}=frac{2pi i}{k}$
so we get
$$c_k=frac{i}{k},quad forall k$$
So we get
$$hat{hat{f}}=sum_{k=-N}^N frac{i}{k}e^{-ikt}$$
Now I am a bit confused to what $N$ now exactly is and how I can "choose" it, like when is it infinity? Sometimes I also see that the sum goes from $k=1$ to $infty$ or from $-infty$ to $+infty$. How do I know which case it is?
Also: Shouldn't I have a vertical scaling term? Something like $hat{hat{f}}=frac{a_0}{2}+sum_{k=-N}^Nc_ke^{-ikt}$?
fourier-series
fourier-series
asked Jan 30 at 18:35
xotixxotix
291411
291411
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093929%2fdetermining-n-when-calculating-a-fourier-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093929%2fdetermining-n-when-calculating-a-fourier-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown