Extension of a integration by parts formula for a linear operator on $C_0(mathbb R)$
$begingroup$
Let
$(mathcal D(A),A)$ be a linear operator on $C_0(mathbb R)$ (the space of continuous functions vanishing at infinity equipped with the supremum norm $left|;cdot;right|_infty$) such that $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$, $$Gamma(f,g):=frac12left(A(fg)-fAg-gAfright);;;text{for }f,gin C_c^infty(mathbb R)$$ and $$mathcal E(f,g):=intGamma(f,g):{rm d}mu;;;text{for }f,gin C_c^infty(mathbb R)$$
Assuming $$int Af:{rm d}mu=0;;;text{for all }fin C_c^infty(mathbb R)tag1$$ and $$int fAg:{rm d}mu=int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R),tag2$$ it's easy to see that $$mathcal E(f,g)=-int fAg:{rm d}mu=-int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R)tag3.$$
Are we able to extend the definition of $mathcal E$, preserving $(3)$, for $finmathcal D(A)$ and $gin C_c^infty(mathbb R)$?
Since $finmathcal D(A)$ and $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$, we should find a $(f_n)_{ninmathbb N}subseteq C_c^infty(mathbb R)$ with $$left|f_n-fright|_infty+left|Af_n-Afright|_inftyxrightarrow{ntoinfty}0.tag4$$ By submultiplicativity of $left|;cdot;right|_infty$, we should have $$left|mathcal E(f_n,g)-mathcal E(f,g)right|lefrac12left(left|A(f_ng)-A(fg)right|_infty+left|f_n-fright|_inftyleft|Agright|_infty+left|gright|_inftyleft|Af_n-Afright|_inftyright)tag5$$ and by $(4)$ the last two terms on the right-hand side tend to $0$ as $ntoinfty$.
Do we have $left|A(f_ng)-A(fg)right|_inftyxrightarrow{ntoinfty}0$ too?
On the other hand, $mathcal E(f_n,g)=-mu(f_nAg)=-mu(gAf_n)$ by $(3)$ for all $ninmathbb N$ and we should easily obtain $$left|mu(f_nAg)-mu(fAg)right|+left|mu(gAf_n)-mu(gAf)right|xrightarrow{ntoinfty}0$$ by $(4)$ and the dominated convergence theorem. Thus, we would be able to conclude the desired claim.
It might be useful to observe that $f_ng,fgin C_c^infty(mathbb R)$ (since $gin C_c^infty(mathbb R)$) for all $ninmathbb N$.
integration functional-analysis operator-theory
$endgroup$
add a comment |
$begingroup$
Let
$(mathcal D(A),A)$ be a linear operator on $C_0(mathbb R)$ (the space of continuous functions vanishing at infinity equipped with the supremum norm $left|;cdot;right|_infty$) such that $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$, $$Gamma(f,g):=frac12left(A(fg)-fAg-gAfright);;;text{for }f,gin C_c^infty(mathbb R)$$ and $$mathcal E(f,g):=intGamma(f,g):{rm d}mu;;;text{for }f,gin C_c^infty(mathbb R)$$
Assuming $$int Af:{rm d}mu=0;;;text{for all }fin C_c^infty(mathbb R)tag1$$ and $$int fAg:{rm d}mu=int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R),tag2$$ it's easy to see that $$mathcal E(f,g)=-int fAg:{rm d}mu=-int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R)tag3.$$
Are we able to extend the definition of $mathcal E$, preserving $(3)$, for $finmathcal D(A)$ and $gin C_c^infty(mathbb R)$?
Since $finmathcal D(A)$ and $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$, we should find a $(f_n)_{ninmathbb N}subseteq C_c^infty(mathbb R)$ with $$left|f_n-fright|_infty+left|Af_n-Afright|_inftyxrightarrow{ntoinfty}0.tag4$$ By submultiplicativity of $left|;cdot;right|_infty$, we should have $$left|mathcal E(f_n,g)-mathcal E(f,g)right|lefrac12left(left|A(f_ng)-A(fg)right|_infty+left|f_n-fright|_inftyleft|Agright|_infty+left|gright|_inftyleft|Af_n-Afright|_inftyright)tag5$$ and by $(4)$ the last two terms on the right-hand side tend to $0$ as $ntoinfty$.
Do we have $left|A(f_ng)-A(fg)right|_inftyxrightarrow{ntoinfty}0$ too?
On the other hand, $mathcal E(f_n,g)=-mu(f_nAg)=-mu(gAf_n)$ by $(3)$ for all $ninmathbb N$ and we should easily obtain $$left|mu(f_nAg)-mu(fAg)right|+left|mu(gAf_n)-mu(gAf)right|xrightarrow{ntoinfty}0$$ by $(4)$ and the dominated convergence theorem. Thus, we would be able to conclude the desired claim.
It might be useful to observe that $f_ng,fgin C_c^infty(mathbb R)$ (since $gin C_c^infty(mathbb R)$) for all $ninmathbb N$.
integration functional-analysis operator-theory
$endgroup$
$begingroup$
I'm not sure if I understand your question correctly. To me it seems like you want to define $mathcal{E}(f,g)$ for $fin D(A)$ and $gin C_c^infty(mathbb{R})$ in such a way that (3) holds and $mathcal{E}(f,g)$ depends continuously on $f$ w.r.t the graph norm. If this is the case, why don't you just take the right side of (3) as definition?
$endgroup$
– MaoWao
Jan 31 at 9:45
add a comment |
$begingroup$
Let
$(mathcal D(A),A)$ be a linear operator on $C_0(mathbb R)$ (the space of continuous functions vanishing at infinity equipped with the supremum norm $left|;cdot;right|_infty$) such that $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$, $$Gamma(f,g):=frac12left(A(fg)-fAg-gAfright);;;text{for }f,gin C_c^infty(mathbb R)$$ and $$mathcal E(f,g):=intGamma(f,g):{rm d}mu;;;text{for }f,gin C_c^infty(mathbb R)$$
Assuming $$int Af:{rm d}mu=0;;;text{for all }fin C_c^infty(mathbb R)tag1$$ and $$int fAg:{rm d}mu=int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R),tag2$$ it's easy to see that $$mathcal E(f,g)=-int fAg:{rm d}mu=-int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R)tag3.$$
Are we able to extend the definition of $mathcal E$, preserving $(3)$, for $finmathcal D(A)$ and $gin C_c^infty(mathbb R)$?
Since $finmathcal D(A)$ and $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$, we should find a $(f_n)_{ninmathbb N}subseteq C_c^infty(mathbb R)$ with $$left|f_n-fright|_infty+left|Af_n-Afright|_inftyxrightarrow{ntoinfty}0.tag4$$ By submultiplicativity of $left|;cdot;right|_infty$, we should have $$left|mathcal E(f_n,g)-mathcal E(f,g)right|lefrac12left(left|A(f_ng)-A(fg)right|_infty+left|f_n-fright|_inftyleft|Agright|_infty+left|gright|_inftyleft|Af_n-Afright|_inftyright)tag5$$ and by $(4)$ the last two terms on the right-hand side tend to $0$ as $ntoinfty$.
Do we have $left|A(f_ng)-A(fg)right|_inftyxrightarrow{ntoinfty}0$ too?
On the other hand, $mathcal E(f_n,g)=-mu(f_nAg)=-mu(gAf_n)$ by $(3)$ for all $ninmathbb N$ and we should easily obtain $$left|mu(f_nAg)-mu(fAg)right|+left|mu(gAf_n)-mu(gAf)right|xrightarrow{ntoinfty}0$$ by $(4)$ and the dominated convergence theorem. Thus, we would be able to conclude the desired claim.
It might be useful to observe that $f_ng,fgin C_c^infty(mathbb R)$ (since $gin C_c^infty(mathbb R)$) for all $ninmathbb N$.
integration functional-analysis operator-theory
$endgroup$
Let
$(mathcal D(A),A)$ be a linear operator on $C_0(mathbb R)$ (the space of continuous functions vanishing at infinity equipped with the supremum norm $left|;cdot;right|_infty$) such that $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$, $$Gamma(f,g):=frac12left(A(fg)-fAg-gAfright);;;text{for }f,gin C_c^infty(mathbb R)$$ and $$mathcal E(f,g):=intGamma(f,g):{rm d}mu;;;text{for }f,gin C_c^infty(mathbb R)$$
Assuming $$int Af:{rm d}mu=0;;;text{for all }fin C_c^infty(mathbb R)tag1$$ and $$int fAg:{rm d}mu=int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R),tag2$$ it's easy to see that $$mathcal E(f,g)=-int fAg:{rm d}mu=-int gAf:{rm d}mu;;;text{for all }f,gin C_c^infty(mathbb R)tag3.$$
Are we able to extend the definition of $mathcal E$, preserving $(3)$, for $finmathcal D(A)$ and $gin C_c^infty(mathbb R)$?
Since $finmathcal D(A)$ and $C_c^infty(mathbb R)$ is a core of $(mathcal D(A),A)$, we should find a $(f_n)_{ninmathbb N}subseteq C_c^infty(mathbb R)$ with $$left|f_n-fright|_infty+left|Af_n-Afright|_inftyxrightarrow{ntoinfty}0.tag4$$ By submultiplicativity of $left|;cdot;right|_infty$, we should have $$left|mathcal E(f_n,g)-mathcal E(f,g)right|lefrac12left(left|A(f_ng)-A(fg)right|_infty+left|f_n-fright|_inftyleft|Agright|_infty+left|gright|_inftyleft|Af_n-Afright|_inftyright)tag5$$ and by $(4)$ the last two terms on the right-hand side tend to $0$ as $ntoinfty$.
Do we have $left|A(f_ng)-A(fg)right|_inftyxrightarrow{ntoinfty}0$ too?
On the other hand, $mathcal E(f_n,g)=-mu(f_nAg)=-mu(gAf_n)$ by $(3)$ for all $ninmathbb N$ and we should easily obtain $$left|mu(f_nAg)-mu(fAg)right|+left|mu(gAf_n)-mu(gAf)right|xrightarrow{ntoinfty}0$$ by $(4)$ and the dominated convergence theorem. Thus, we would be able to conclude the desired claim.
It might be useful to observe that $f_ng,fgin C_c^infty(mathbb R)$ (since $gin C_c^infty(mathbb R)$) for all $ninmathbb N$.
integration functional-analysis operator-theory
integration functional-analysis operator-theory
edited Jan 30 at 19:59
0xbadf00d
asked Jan 30 at 13:54
0xbadf00d0xbadf00d
1,80641534
1,80641534
$begingroup$
I'm not sure if I understand your question correctly. To me it seems like you want to define $mathcal{E}(f,g)$ for $fin D(A)$ and $gin C_c^infty(mathbb{R})$ in such a way that (3) holds and $mathcal{E}(f,g)$ depends continuously on $f$ w.r.t the graph norm. If this is the case, why don't you just take the right side of (3) as definition?
$endgroup$
– MaoWao
Jan 31 at 9:45
add a comment |
$begingroup$
I'm not sure if I understand your question correctly. To me it seems like you want to define $mathcal{E}(f,g)$ for $fin D(A)$ and $gin C_c^infty(mathbb{R})$ in such a way that (3) holds and $mathcal{E}(f,g)$ depends continuously on $f$ w.r.t the graph norm. If this is the case, why don't you just take the right side of (3) as definition?
$endgroup$
– MaoWao
Jan 31 at 9:45
$begingroup$
I'm not sure if I understand your question correctly. To me it seems like you want to define $mathcal{E}(f,g)$ for $fin D(A)$ and $gin C_c^infty(mathbb{R})$ in such a way that (3) holds and $mathcal{E}(f,g)$ depends continuously on $f$ w.r.t the graph norm. If this is the case, why don't you just take the right side of (3) as definition?
$endgroup$
– MaoWao
Jan 31 at 9:45
$begingroup$
I'm not sure if I understand your question correctly. To me it seems like you want to define $mathcal{E}(f,g)$ for $fin D(A)$ and $gin C_c^infty(mathbb{R})$ in such a way that (3) holds and $mathcal{E}(f,g)$ depends continuously on $f$ w.r.t the graph norm. If this is the case, why don't you just take the right side of (3) as definition?
$endgroup$
– MaoWao
Jan 31 at 9:45
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093551%2fextension-of-a-integration-by-parts-formula-for-a-linear-operator-on-c-0-mathb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093551%2fextension-of-a-integration-by-parts-formula-for-a-linear-operator-on-c-0-mathb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I'm not sure if I understand your question correctly. To me it seems like you want to define $mathcal{E}(f,g)$ for $fin D(A)$ and $gin C_c^infty(mathbb{R})$ in such a way that (3) holds and $mathcal{E}(f,g)$ depends continuously on $f$ w.r.t the graph norm. If this is the case, why don't you just take the right side of (3) as definition?
$endgroup$
– MaoWao
Jan 31 at 9:45