Evaluating $lim_{epsilonto 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right)...
$begingroup$
For $nu in mathbb{C}$ and negative $y<0$ is there a way to compute the limit
$$
f(nu,y) equiv lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}
$$
in terms of simpler special functions (ideally not hypergeometrics...)? So far, I thought about writing this in terms of the series
$$
f(nu,y) = sum_{n=0}^infty frac{Gamma(frac{1}{2} - nu + n )Gamma(frac{1}{2} + nu + n )}{(n-1)! n!} y^n
$$
I think that this series converges at least for $-1 < y < 0$, but I am also interested in values of $y leq -1$.
(EDIT: I know that $_2F_1(a,b;c;z)$ has poles at $c=0,-1,-2,ldots$, this makes it hard to learn anything about this limit using Mathematica)
hypergeometric-function
$endgroup$
add a comment |
$begingroup$
For $nu in mathbb{C}$ and negative $y<0$ is there a way to compute the limit
$$
f(nu,y) equiv lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}
$$
in terms of simpler special functions (ideally not hypergeometrics...)? So far, I thought about writing this in terms of the series
$$
f(nu,y) = sum_{n=0}^infty frac{Gamma(frac{1}{2} - nu + n )Gamma(frac{1}{2} + nu + n )}{(n-1)! n!} y^n
$$
I think that this series converges at least for $-1 < y < 0$, but I am also interested in values of $y leq -1$.
(EDIT: I know that $_2F_1(a,b;c;z)$ has poles at $c=0,-1,-2,ldots$, this makes it hard to learn anything about this limit using Mathematica)
hypergeometric-function
$endgroup$
add a comment |
$begingroup$
For $nu in mathbb{C}$ and negative $y<0$ is there a way to compute the limit
$$
f(nu,y) equiv lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}
$$
in terms of simpler special functions (ideally not hypergeometrics...)? So far, I thought about writing this in terms of the series
$$
f(nu,y) = sum_{n=0}^infty frac{Gamma(frac{1}{2} - nu + n )Gamma(frac{1}{2} + nu + n )}{(n-1)! n!} y^n
$$
I think that this series converges at least for $-1 < y < 0$, but I am also interested in values of $y leq -1$.
(EDIT: I know that $_2F_1(a,b;c;z)$ has poles at $c=0,-1,-2,ldots$, this makes it hard to learn anything about this limit using Mathematica)
hypergeometric-function
$endgroup$
For $nu in mathbb{C}$ and negative $y<0$ is there a way to compute the limit
$$
f(nu,y) equiv lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}
$$
in terms of simpler special functions (ideally not hypergeometrics...)? So far, I thought about writing this in terms of the series
$$
f(nu,y) = sum_{n=0}^infty frac{Gamma(frac{1}{2} - nu + n )Gamma(frac{1}{2} + nu + n )}{(n-1)! n!} y^n
$$
I think that this series converges at least for $-1 < y < 0$, but I am also interested in values of $y leq -1$.
(EDIT: I know that $_2F_1(a,b;c;z)$ has poles at $c=0,-1,-2,ldots$, this makes it hard to learn anything about this limit using Mathematica)
hypergeometric-function
hypergeometric-function
asked Jan 30 at 16:20
Greg.PaulGreg.Paul
787921
787921
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We may express
begin{equation}
_2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) =frac{Gammaleft(epsilonright)}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=0}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(epsilon+sright)s!}y^{s}
end{equation}
and thus,
begin{align}
lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}&=frac{1}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=1}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(sright)s!}y^{s}\
&=frac{y}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{t=0}^{infty}frac{Gammaleft(tfrac{3}{2} - nu+tright)Gammaleft(tfrac{3}{2} + nu+s%
right)}{Gammaleft(t+2right)t!}y^{t}\
&=frac{yGammaleft(tfrac{3}{2} - nuright)Gamma%
left(tfrac{3}{2} + nuright)}{Gamma(2)Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)} ,_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)\
&=yleft( frac{1}{4}-nu^2 right),_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)
end{align}
From this representation of the associated Legendre function
begin{equation}
_2F_1left(a,b;tfrac{1}{2}(a+b+1);zright)=left(-z(1-z)right)^{%
frac{(1-a-b)}{4}},P^{(1-a-b)/2}_{(a-b-1)/2}left(1-2zright)
end{equation}
with $a=3/2+nu,b=3/2-nu$ we can express
begin{equation}
f(nu,y)=left( frac{1}{4}-nu^2 right)sqrt{frac{-y}{1-y}}P^{-1}_{nu-1/2}left( 1-2y right)
end{equation}
where $1-2y>0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093741%2fevaluating-lim-epsilon-to-0-frac-2f-1-left-tfrac12-nu-tf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We may express
begin{equation}
_2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) =frac{Gammaleft(epsilonright)}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=0}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(epsilon+sright)s!}y^{s}
end{equation}
and thus,
begin{align}
lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}&=frac{1}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=1}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(sright)s!}y^{s}\
&=frac{y}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{t=0}^{infty}frac{Gammaleft(tfrac{3}{2} - nu+tright)Gammaleft(tfrac{3}{2} + nu+s%
right)}{Gammaleft(t+2right)t!}y^{t}\
&=frac{yGammaleft(tfrac{3}{2} - nuright)Gamma%
left(tfrac{3}{2} + nuright)}{Gamma(2)Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)} ,_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)\
&=yleft( frac{1}{4}-nu^2 right),_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)
end{align}
From this representation of the associated Legendre function
begin{equation}
_2F_1left(a,b;tfrac{1}{2}(a+b+1);zright)=left(-z(1-z)right)^{%
frac{(1-a-b)}{4}},P^{(1-a-b)/2}_{(a-b-1)/2}left(1-2zright)
end{equation}
with $a=3/2+nu,b=3/2-nu$ we can express
begin{equation}
f(nu,y)=left( frac{1}{4}-nu^2 right)sqrt{frac{-y}{1-y}}P^{-1}_{nu-1/2}left( 1-2y right)
end{equation}
where $1-2y>0$.
$endgroup$
add a comment |
$begingroup$
We may express
begin{equation}
_2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) =frac{Gammaleft(epsilonright)}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=0}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(epsilon+sright)s!}y^{s}
end{equation}
and thus,
begin{align}
lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}&=frac{1}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=1}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(sright)s!}y^{s}\
&=frac{y}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{t=0}^{infty}frac{Gammaleft(tfrac{3}{2} - nu+tright)Gammaleft(tfrac{3}{2} + nu+s%
right)}{Gammaleft(t+2right)t!}y^{t}\
&=frac{yGammaleft(tfrac{3}{2} - nuright)Gamma%
left(tfrac{3}{2} + nuright)}{Gamma(2)Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)} ,_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)\
&=yleft( frac{1}{4}-nu^2 right),_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)
end{align}
From this representation of the associated Legendre function
begin{equation}
_2F_1left(a,b;tfrac{1}{2}(a+b+1);zright)=left(-z(1-z)right)^{%
frac{(1-a-b)}{4}},P^{(1-a-b)/2}_{(a-b-1)/2}left(1-2zright)
end{equation}
with $a=3/2+nu,b=3/2-nu$ we can express
begin{equation}
f(nu,y)=left( frac{1}{4}-nu^2 right)sqrt{frac{-y}{1-y}}P^{-1}_{nu-1/2}left( 1-2y right)
end{equation}
where $1-2y>0$.
$endgroup$
add a comment |
$begingroup$
We may express
begin{equation}
_2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) =frac{Gammaleft(epsilonright)}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=0}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(epsilon+sright)s!}y^{s}
end{equation}
and thus,
begin{align}
lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}&=frac{1}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=1}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(sright)s!}y^{s}\
&=frac{y}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{t=0}^{infty}frac{Gammaleft(tfrac{3}{2} - nu+tright)Gammaleft(tfrac{3}{2} + nu+s%
right)}{Gammaleft(t+2right)t!}y^{t}\
&=frac{yGammaleft(tfrac{3}{2} - nuright)Gamma%
left(tfrac{3}{2} + nuright)}{Gamma(2)Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)} ,_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)\
&=yleft( frac{1}{4}-nu^2 right),_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)
end{align}
From this representation of the associated Legendre function
begin{equation}
_2F_1left(a,b;tfrac{1}{2}(a+b+1);zright)=left(-z(1-z)right)^{%
frac{(1-a-b)}{4}},P^{(1-a-b)/2}_{(a-b-1)/2}left(1-2zright)
end{equation}
with $a=3/2+nu,b=3/2-nu$ we can express
begin{equation}
f(nu,y)=left( frac{1}{4}-nu^2 right)sqrt{frac{-y}{1-y}}P^{-1}_{nu-1/2}left( 1-2y right)
end{equation}
where $1-2y>0$.
$endgroup$
We may express
begin{equation}
_2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) =frac{Gammaleft(epsilonright)}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=0}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(epsilon+sright)s!}y^{s}
end{equation}
and thus,
begin{align}
lim_{epsilon to 0^{+}} frac{ _2F_1left( tfrac{1}{2} - nu, tfrac{1}{2} + nu; epsilon; y right) }{Gamma(epsilon)}&=frac{1}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{s=1}^{infty}frac{Gammaleft(tfrac{1}{2} - nu+sright)Gammaleft(tfrac{1}{2} + nu+s%
right)}{Gammaleft(sright)s!}y^{s}\
&=frac{y}{Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)}sum_{t=0}^{infty}frac{Gammaleft(tfrac{3}{2} - nu+tright)Gammaleft(tfrac{3}{2} + nu+s%
right)}{Gammaleft(t+2right)t!}y^{t}\
&=frac{yGammaleft(tfrac{3}{2} - nuright)Gamma%
left(tfrac{3}{2} + nuright)}{Gamma(2)Gammaleft(tfrac{1}{2} - nuright)Gamma%
left(tfrac{1}{2} + nuright)} ,_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)\
&=yleft( frac{1}{4}-nu^2 right),_2F_1left(tfrac{3}{2} - nu,tfrac{3}{2} +nu;2;y right)
end{align}
From this representation of the associated Legendre function
begin{equation}
_2F_1left(a,b;tfrac{1}{2}(a+b+1);zright)=left(-z(1-z)right)^{%
frac{(1-a-b)}{4}},P^{(1-a-b)/2}_{(a-b-1)/2}left(1-2zright)
end{equation}
with $a=3/2+nu,b=3/2-nu$ we can express
begin{equation}
f(nu,y)=left( frac{1}{4}-nu^2 right)sqrt{frac{-y}{1-y}}P^{-1}_{nu-1/2}left( 1-2y right)
end{equation}
where $1-2y>0$.
answered Jan 30 at 18:33
Paul EntaPaul Enta
5,38611434
5,38611434
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093741%2fevaluating-lim-epsilon-to-0-frac-2f-1-left-tfrac12-nu-tf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown