Find $alpha$,$beta$ if $lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x -beta] = 0$
Here is my approach.
Consider;
$$ax^2 + 2bx + c = 0$$
or;
$$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
Hence;
$$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
$$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
For large values of $x$ we may apply the binomial approximation, so that;
$$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
$$=x + frac {b}{a} + frac {c}{4ax}$$
As $x→∞$ the final term in the above expression vanishes. Hence;
$$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
gives;
$$x+frac {b}{a} - alpha x - beta = 0,$$
or;
$$(1-alpha)x + (frac {b}{a} - beta) = 0$$
As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
$$alpha = 1, beta = frac {b}{a}$$
But I doubt it is hardly correct. Is there any better method for the problem?
limits
add a comment |
Here is my approach.
Consider;
$$ax^2 + 2bx + c = 0$$
or;
$$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
Hence;
$$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
$$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
For large values of $x$ we may apply the binomial approximation, so that;
$$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
$$=x + frac {b}{a} + frac {c}{4ax}$$
As $x→∞$ the final term in the above expression vanishes. Hence;
$$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
gives;
$$x+frac {b}{a} - alpha x - beta = 0,$$
or;
$$(1-alpha)x + (frac {b}{a} - beta) = 0$$
As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
$$alpha = 1, beta = frac {b}{a}$$
But I doubt it is hardly correct. Is there any better method for the problem?
limits
add a comment |
Here is my approach.
Consider;
$$ax^2 + 2bx + c = 0$$
or;
$$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
Hence;
$$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
$$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
For large values of $x$ we may apply the binomial approximation, so that;
$$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
$$=x + frac {b}{a} + frac {c}{4ax}$$
As $x→∞$ the final term in the above expression vanishes. Hence;
$$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
gives;
$$x+frac {b}{a} - alpha x - beta = 0,$$
or;
$$(1-alpha)x + (frac {b}{a} - beta) = 0$$
As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
$$alpha = 1, beta = frac {b}{a}$$
But I doubt it is hardly correct. Is there any better method for the problem?
limits
Here is my approach.
Consider;
$$ax^2 + 2bx + c = 0$$
or;
$$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
Hence;
$$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
$$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
For large values of $x$ we may apply the binomial approximation, so that;
$$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
$$=x + frac {b}{a} + frac {c}{4ax}$$
As $x→∞$ the final term in the above expression vanishes. Hence;
$$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
gives;
$$x+frac {b}{a} - alpha x - beta = 0,$$
or;
$$(1-alpha)x + (frac {b}{a} - beta) = 0$$
As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
$$alpha = 1, beta = frac {b}{a}$$
But I doubt it is hardly correct. Is there any better method for the problem?
limits
limits
asked Nov 21 '18 at 5:35


Awe Kumar Jha
38613
38613
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$
$$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$
$(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$
As the denominator $to0,$ $$a-alpha^2=0$$
as the denominator is $O(h)$ $$b-2alphabeta=0$$
add a comment |
Another approach could be Taylor series
$$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
$$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
x}+Oleft(frac{1}{x^2}right)$$
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
add a comment |
You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$
That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007306%2ffind-alpha-beta-if-lim-x%25e2%2586%2592%25e2%2588%259e-sqrt-ax22bxc-alpha-x-beta-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$
$$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$
$(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$
As the denominator $to0,$ $$a-alpha^2=0$$
as the denominator is $O(h)$ $$b-2alphabeta=0$$
add a comment |
Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$
$$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$
$(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$
As the denominator $to0,$ $$a-alpha^2=0$$
as the denominator is $O(h)$ $$b-2alphabeta=0$$
add a comment |
Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$
$$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$
$(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$
As the denominator $to0,$ $$a-alpha^2=0$$
as the denominator is $O(h)$ $$b-2alphabeta=0$$
Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$
$$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$
$(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$
As the denominator $to0,$ $$a-alpha^2=0$$
as the denominator is $O(h)$ $$b-2alphabeta=0$$
answered Nov 21 '18 at 5:42
lab bhattacharjee
223k15156274
223k15156274
add a comment |
add a comment |
Another approach could be Taylor series
$$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
$$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
x}+Oleft(frac{1}{x^2}right)$$
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
add a comment |
Another approach could be Taylor series
$$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
$$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
x}+Oleft(frac{1}{x^2}right)$$
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
add a comment |
Another approach could be Taylor series
$$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
$$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
x}+Oleft(frac{1}{x^2}right)$$
Another approach could be Taylor series
$$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
$$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
x}+Oleft(frac{1}{x^2}right)$$
answered Nov 21 '18 at 6:18
Claude Leibovici
119k1157132
119k1157132
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
add a comment |
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
I like THIS approach! (+1)
– Robert Z
Nov 21 '18 at 6:39
add a comment |
You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$
That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
add a comment |
You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$
That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
add a comment |
You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$
That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$
You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$
That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$
answered Nov 21 '18 at 6:18


Mohammad Riazi-Kermani
41k42059
41k42059
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
add a comment |
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
$b=2alphabeta$ right? and $c-beta^2$ needs to be finite
– lab bhattacharjee
Nov 21 '18 at 6:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007306%2ffind-alpha-beta-if-lim-x%25e2%2586%2592%25e2%2588%259e-sqrt-ax22bxc-alpha-x-beta-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown