Find the complex numbers $z$ such that $w=frac{2z-1}{2+iz}$ is real
$begingroup$
Find the complex numbers $z$ such that $w=dfrac{2z-1}{2+iz}$ is real.
I have been trying to separate the imaginary part from the real one, so I can cancel the imaginary one.
Trouble is that, by manipulating $w$, it just seems to get much worse.
Any path to follow?
complex-numbers
$endgroup$
add a comment |
$begingroup$
Find the complex numbers $z$ such that $w=dfrac{2z-1}{2+iz}$ is real.
I have been trying to separate the imaginary part from the real one, so I can cancel the imaginary one.
Trouble is that, by manipulating $w$, it just seems to get much worse.
Any path to follow?
complex-numbers
$endgroup$
2
$begingroup$
Hint: let $z=x+iy$...
$endgroup$
– Sean Roberson
Jan 30 at 4:53
$begingroup$
Thanks. I already tried it but doesn't seem to get any simpler. I tried to multiply the $w$ by its conjugate
$endgroup$
– Sebas Martinez Santos
Jan 30 at 5:07
$begingroup$
$$iff w=bar w$$
$endgroup$
– lab bhattacharjee
Jan 30 at 5:18
add a comment |
$begingroup$
Find the complex numbers $z$ such that $w=dfrac{2z-1}{2+iz}$ is real.
I have been trying to separate the imaginary part from the real one, so I can cancel the imaginary one.
Trouble is that, by manipulating $w$, it just seems to get much worse.
Any path to follow?
complex-numbers
$endgroup$
Find the complex numbers $z$ such that $w=dfrac{2z-1}{2+iz}$ is real.
I have been trying to separate the imaginary part from the real one, so I can cancel the imaginary one.
Trouble is that, by manipulating $w$, it just seems to get much worse.
Any path to follow?
complex-numbers
complex-numbers
edited Feb 3 at 17:27
Did
248k23227466
248k23227466
asked Jan 30 at 4:49
Sebas Martinez SantosSebas Martinez Santos
667
667
2
$begingroup$
Hint: let $z=x+iy$...
$endgroup$
– Sean Roberson
Jan 30 at 4:53
$begingroup$
Thanks. I already tried it but doesn't seem to get any simpler. I tried to multiply the $w$ by its conjugate
$endgroup$
– Sebas Martinez Santos
Jan 30 at 5:07
$begingroup$
$$iff w=bar w$$
$endgroup$
– lab bhattacharjee
Jan 30 at 5:18
add a comment |
2
$begingroup$
Hint: let $z=x+iy$...
$endgroup$
– Sean Roberson
Jan 30 at 4:53
$begingroup$
Thanks. I already tried it but doesn't seem to get any simpler. I tried to multiply the $w$ by its conjugate
$endgroup$
– Sebas Martinez Santos
Jan 30 at 5:07
$begingroup$
$$iff w=bar w$$
$endgroup$
– lab bhattacharjee
Jan 30 at 5:18
2
2
$begingroup$
Hint: let $z=x+iy$...
$endgroup$
– Sean Roberson
Jan 30 at 4:53
$begingroup$
Hint: let $z=x+iy$...
$endgroup$
– Sean Roberson
Jan 30 at 4:53
$begingroup$
Thanks. I already tried it but doesn't seem to get any simpler. I tried to multiply the $w$ by its conjugate
$endgroup$
– Sebas Martinez Santos
Jan 30 at 5:07
$begingroup$
Thanks. I already tried it but doesn't seem to get any simpler. I tried to multiply the $w$ by its conjugate
$endgroup$
– Sebas Martinez Santos
Jan 30 at 5:07
$begingroup$
$$iff w=bar w$$
$endgroup$
– lab bhattacharjee
Jan 30 at 5:18
$begingroup$
$$iff w=bar w$$
$endgroup$
– lab bhattacharjee
Jan 30 at 5:18
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$w=frac{(2x-1)+iy}{(2-y)+ix}=frac{[(2x-1)+iy][(2-y)-ix]}{(2-y)^2+x^2}$$
Multiply by the numerator to get
$$(2x-1)(2-y)-i(2x^2-x)-i(2y-y^2)-xy$$
The imaginary part is $x-2x^2+y^2-2y$. Setting it equal to zero, you can conplete the squares on $x$ and $y$ to maybe get a familiar geometric shape....
$$-2left(x^2-frac{1}{2}x+frac{1}{16}right)+(y^2-2y+1)+frac{1}{8}-1=0$$
$$(y-1)^2-2left(x-frac{1}{4}right)^2=frac{7}{8}$$
$endgroup$
add a comment |
$begingroup$
HINT:
$$frac{2z-1}{2+iz}=frac{2z-1}{2+iz},frac{2-ibar z}{2- ibar z}=frac{4z-2-i2|z|^2-ibar z}{4+|z|^2+4text{Im}(z)}$$
Now, answer the question "what values of $z$ makes the numerator real?"
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093112%2ffind-the-complex-numbers-z-such-that-w-frac2z-12iz-is-real%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$w=frac{(2x-1)+iy}{(2-y)+ix}=frac{[(2x-1)+iy][(2-y)-ix]}{(2-y)^2+x^2}$$
Multiply by the numerator to get
$$(2x-1)(2-y)-i(2x^2-x)-i(2y-y^2)-xy$$
The imaginary part is $x-2x^2+y^2-2y$. Setting it equal to zero, you can conplete the squares on $x$ and $y$ to maybe get a familiar geometric shape....
$$-2left(x^2-frac{1}{2}x+frac{1}{16}right)+(y^2-2y+1)+frac{1}{8}-1=0$$
$$(y-1)^2-2left(x-frac{1}{4}right)^2=frac{7}{8}$$
$endgroup$
add a comment |
$begingroup$
$$w=frac{(2x-1)+iy}{(2-y)+ix}=frac{[(2x-1)+iy][(2-y)-ix]}{(2-y)^2+x^2}$$
Multiply by the numerator to get
$$(2x-1)(2-y)-i(2x^2-x)-i(2y-y^2)-xy$$
The imaginary part is $x-2x^2+y^2-2y$. Setting it equal to zero, you can conplete the squares on $x$ and $y$ to maybe get a familiar geometric shape....
$$-2left(x^2-frac{1}{2}x+frac{1}{16}right)+(y^2-2y+1)+frac{1}{8}-1=0$$
$$(y-1)^2-2left(x-frac{1}{4}right)^2=frac{7}{8}$$
$endgroup$
add a comment |
$begingroup$
$$w=frac{(2x-1)+iy}{(2-y)+ix}=frac{[(2x-1)+iy][(2-y)-ix]}{(2-y)^2+x^2}$$
Multiply by the numerator to get
$$(2x-1)(2-y)-i(2x^2-x)-i(2y-y^2)-xy$$
The imaginary part is $x-2x^2+y^2-2y$. Setting it equal to zero, you can conplete the squares on $x$ and $y$ to maybe get a familiar geometric shape....
$$-2left(x^2-frac{1}{2}x+frac{1}{16}right)+(y^2-2y+1)+frac{1}{8}-1=0$$
$$(y-1)^2-2left(x-frac{1}{4}right)^2=frac{7}{8}$$
$endgroup$
$$w=frac{(2x-1)+iy}{(2-y)+ix}=frac{[(2x-1)+iy][(2-y)-ix]}{(2-y)^2+x^2}$$
Multiply by the numerator to get
$$(2x-1)(2-y)-i(2x^2-x)-i(2y-y^2)-xy$$
The imaginary part is $x-2x^2+y^2-2y$. Setting it equal to zero, you can conplete the squares on $x$ and $y$ to maybe get a familiar geometric shape....
$$-2left(x^2-frac{1}{2}x+frac{1}{16}right)+(y^2-2y+1)+frac{1}{8}-1=0$$
$$(y-1)^2-2left(x-frac{1}{4}right)^2=frac{7}{8}$$
edited Jan 30 at 18:00
answered Jan 30 at 5:16


Eleven-ElevenEleven-Eleven
5,78872759
5,78872759
add a comment |
add a comment |
$begingroup$
HINT:
$$frac{2z-1}{2+iz}=frac{2z-1}{2+iz},frac{2-ibar z}{2- ibar z}=frac{4z-2-i2|z|^2-ibar z}{4+|z|^2+4text{Im}(z)}$$
Now, answer the question "what values of $z$ makes the numerator real?"
$endgroup$
add a comment |
$begingroup$
HINT:
$$frac{2z-1}{2+iz}=frac{2z-1}{2+iz},frac{2-ibar z}{2- ibar z}=frac{4z-2-i2|z|^2-ibar z}{4+|z|^2+4text{Im}(z)}$$
Now, answer the question "what values of $z$ makes the numerator real?"
$endgroup$
add a comment |
$begingroup$
HINT:
$$frac{2z-1}{2+iz}=frac{2z-1}{2+iz},frac{2-ibar z}{2- ibar z}=frac{4z-2-i2|z|^2-ibar z}{4+|z|^2+4text{Im}(z)}$$
Now, answer the question "what values of $z$ makes the numerator real?"
$endgroup$
HINT:
$$frac{2z-1}{2+iz}=frac{2z-1}{2+iz},frac{2-ibar z}{2- ibar z}=frac{4z-2-i2|z|^2-ibar z}{4+|z|^2+4text{Im}(z)}$$
Now, answer the question "what values of $z$ makes the numerator real?"
answered Jan 30 at 5:19
Mark ViolaMark Viola
134k1278176
134k1278176
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093112%2ffind-the-complex-numbers-z-such-that-w-frac2z-12iz-is-real%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Hint: let $z=x+iy$...
$endgroup$
– Sean Roberson
Jan 30 at 4:53
$begingroup$
Thanks. I already tried it but doesn't seem to get any simpler. I tried to multiply the $w$ by its conjugate
$endgroup$
– Sebas Martinez Santos
Jan 30 at 5:07
$begingroup$
$$iff w=bar w$$
$endgroup$
– lab bhattacharjee
Jan 30 at 5:18