Find the $limlimits_{k to infty} frac{f(k)}{k^2} $












1












$begingroup$


Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$

Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}

where $vert Avert$ is the number of elements of a set $A$.




Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?




My attempts:



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    why are you constantly uploading the same image and edit the question with no difference at all.
    $endgroup$
    – Nathanael Skrepek
    Jan 29 at 16:49
















1












$begingroup$


Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$

Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}

where $vert Avert$ is the number of elements of a set $A$.




Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?




My attempts:



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    why are you constantly uploading the same image and edit the question with no difference at all.
    $endgroup$
    – Nathanael Skrepek
    Jan 29 at 16:49














1












1








1





$begingroup$


Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$

Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}

where $vert Avert$ is the number of elements of a set $A$.




Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?




My attempts:



enter image description here










share|cite|improve this question











$endgroup$




Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$

Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}

where $vert Avert$ is the number of elements of a set $A$.




Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?




My attempts:



enter image description here







real-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 17:53







mina_world

















asked Jan 29 at 16:27









mina_worldmina_world

1799




1799












  • $begingroup$
    why are you constantly uploading the same image and edit the question with no difference at all.
    $endgroup$
    – Nathanael Skrepek
    Jan 29 at 16:49


















  • $begingroup$
    why are you constantly uploading the same image and edit the question with no difference at all.
    $endgroup$
    – Nathanael Skrepek
    Jan 29 at 16:49
















$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49




$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49










1 Answer
1






active

oldest

votes


















1












$begingroup$

Note that for all $a, bin Bbb R,$ it holds that $$
(b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
$$
where $c^+=max{c,0}$.
Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
$$
satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
$$
left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
$$
It follows that
$$begin{eqnarray}
lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
&=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
&=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
end{eqnarray}$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092384%2ffind-the-lim-limits-k-to-infty-fracfkk2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Note that for all $a, bin Bbb R,$ it holds that $$
    (b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
    $$
    where $c^+=max{c,0}$.
    Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
    kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
    $$
    satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
    $$
    left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
    $$
    It follows that
    $$begin{eqnarray}
    lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
    &=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
    &=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
    end{eqnarray}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Note that for all $a, bin Bbb R,$ it holds that $$
      (b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
      $$
      where $c^+=max{c,0}$.
      Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
      kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
      $$
      satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
      $$
      left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
      $$
      It follows that
      $$begin{eqnarray}
      lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
      &=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
      &=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
      end{eqnarray}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Note that for all $a, bin Bbb R,$ it holds that $$
        (b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
        $$
        where $c^+=max{c,0}$.
        Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
        kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
        $$
        satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
        $$
        left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
        $$
        It follows that
        $$begin{eqnarray}
        lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
        &=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
        &=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
        end{eqnarray}$$






        share|cite|improve this answer









        $endgroup$



        Note that for all $a, bin Bbb R,$ it holds that $$
        (b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
        $$
        where $c^+=max{c,0}$.
        Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
        kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
        $$
        satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
        $$
        left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
        $$
        It follows that
        $$begin{eqnarray}
        lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
        &=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
        &=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
        end{eqnarray}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 29 at 16:51









        SongSong

        18.5k21651




        18.5k21651






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092384%2ffind-the-lim-limits-k-to-infty-fracfkk2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith