Find the $limlimits_{k to infty} frac{f(k)}{k^2} $
$begingroup$
Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$
Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}
where $vert Avert$ is the number of elements of a set $A$.
Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?
My attempts:
real-analysis limits
$endgroup$
add a comment |
$begingroup$
Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$
Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}
where $vert Avert$ is the number of elements of a set $A$.
Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?
My attempts:
real-analysis limits
$endgroup$
$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49
add a comment |
$begingroup$
Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$
Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}
where $vert Avert$ is the number of elements of a set $A$.
Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?
My attempts:
real-analysis limits
$endgroup$
Let $newcommand{N}{mathbb{N}}k$ be positive integer then we define the set
$$
A(k) := Big{(m,n)in N^2 : bigvert kcosbig(frac{npi}{k}big)bigvert leq m leq ksinbig(frac{npi}{k}big)Big}.
$$
Furthermore, we define the function
begin{align}
f: left{
begin{array}{rcl}
N & to &N, \
k & mapsto & vert A(k) vert,
end{array}
right.
end{align}
where $vert Avert$ is the number of elements of a set $A$.
Question: Does $limlimits_{k to infty} frac{f(k)}{k^2}$ exist and if so how can it be calculated?
My attempts:
real-analysis limits
real-analysis limits
edited Jan 29 at 17:53
mina_world
asked Jan 29 at 16:27
mina_worldmina_world
1799
1799
$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49
add a comment |
$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49
$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49
$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that for all $a, bin Bbb R,$ it holds that $$
(b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
$$ where $c^+=max{c,0}$.
Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
$$ satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
$$
left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
$$ It follows that
$$begin{eqnarray}
lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
&=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
&=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
end{eqnarray}$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092384%2ffind-the-lim-limits-k-to-infty-fracfkk2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that for all $a, bin Bbb R,$ it holds that $$
(b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
$$ where $c^+=max{c,0}$.
Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
$$ satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
$$
left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
$$ It follows that
$$begin{eqnarray}
lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
&=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
&=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Note that for all $a, bin Bbb R,$ it holds that $$
(b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
$$ where $c^+=max{c,0}$.
Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
$$ satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
$$
left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
$$ It follows that
$$begin{eqnarray}
lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
&=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
&=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Note that for all $a, bin Bbb R,$ it holds that $$
(b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
$$ where $c^+=max{c,0}$.
Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
$$ satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
$$
left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
$$ It follows that
$$begin{eqnarray}
lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
&=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
&=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
end{eqnarray}$$
$endgroup$
Note that for all $a, bin Bbb R,$ it holds that $$
(b-a)^+-1 le|{x:ale xle b}cap Bbb Z|le (b-a)^++1
$$ where $c^+=max{c,0}$.
Hence the number $N(k,n)$ of $min Bbb Z$ satisfying $$
kleft|cos left(frac{npi}{k}right)right|le m le ksinleft(frac{npi}{k}right)
$$ satisfies $$kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+-1 le N(k,n)le kleft(sinleft(frac{npi}{k}right)-kleft|cos left(frac{npi}{k}right)right|right)^++1.$$ Since $f(k) =sum_{n=1}^k N(k,n)$, this gives
$$
left|sum_{n=1}^kkleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+ -f(k)right|le k.
$$ It follows that
$$begin{eqnarray}
lim_{ktoinfty}frac{f(k)}{k^2}&=&lim_{ktoinfty}sum_{n=1}^kleft(sinleft(frac{npi}{k}right)-left|cos left(frac{npi}{k}right)right|right)^+frac{1}{k}\&=&int_0^1 (sin pi x-|cos pi x|)^+mathrm{d}x\
&=&2int_{frac{1}{4}}^{frac{1}{2}}(sinpi x-cospi x) mathrm{d}x\
&=&frac{2}{pi}left[-cos pi x-sin pi xright]^{frac{1}{2}}_{frac{1}{4}}=frac{2}{pi}(sqrt{2}-1).
end{eqnarray}$$
answered Jan 29 at 16:51


SongSong
18.5k21651
18.5k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092384%2ffind-the-lim-limits-k-to-infty-fracfkk2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
why are you constantly uploading the same image and edit the question with no difference at all.
$endgroup$
– Nathanael Skrepek
Jan 29 at 16:49