Find the resolvent kernel of particular form of volterra integral equation of second kind
$begingroup$
Find the resolvent kernel for the integral equation
$$u(x)= 30 +6x+∫_0^x(5t-6t^2 )u(t)dt$$
I try to solve but its lengthy
$$k(x,t)=(5t-6t^2)$$
$$k_2(x,t)=∫_ξ^x (5t-6t^2)(5ξ-6ξ^2)dt$$
its very lengthy how i find out $$k_3 $$ and$$k_n+1$$
Suppose that the kernel (x,t ) is a polynomial of degree (n − 1) in x, which can always
be represented in the form
$$a_0(x)+a_1(x)(x-t)$$
then how we take the values if a_0 and a_1
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Find the resolvent kernel for the integral equation
$$u(x)= 30 +6x+∫_0^x(5t-6t^2 )u(t)dt$$
I try to solve but its lengthy
$$k(x,t)=(5t-6t^2)$$
$$k_2(x,t)=∫_ξ^x (5t-6t^2)(5ξ-6ξ^2)dt$$
its very lengthy how i find out $$k_3 $$ and$$k_n+1$$
Suppose that the kernel (x,t ) is a polynomial of degree (n − 1) in x, which can always
be represented in the form
$$a_0(x)+a_1(x)(x-t)$$
then how we take the values if a_0 and a_1
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Find the resolvent kernel for the integral equation
$$u(x)= 30 +6x+∫_0^x(5t-6t^2 )u(t)dt$$
I try to solve but its lengthy
$$k(x,t)=(5t-6t^2)$$
$$k_2(x,t)=∫_ξ^x (5t-6t^2)(5ξ-6ξ^2)dt$$
its very lengthy how i find out $$k_3 $$ and$$k_n+1$$
Suppose that the kernel (x,t ) is a polynomial of degree (n − 1) in x, which can always
be represented in the form
$$a_0(x)+a_1(x)(x-t)$$
then how we take the values if a_0 and a_1
integration definite-integrals
$endgroup$
Find the resolvent kernel for the integral equation
$$u(x)= 30 +6x+∫_0^x(5t-6t^2 )u(t)dt$$
I try to solve but its lengthy
$$k(x,t)=(5t-6t^2)$$
$$k_2(x,t)=∫_ξ^x (5t-6t^2)(5ξ-6ξ^2)dt$$
its very lengthy how i find out $$k_3 $$ and$$k_n+1$$
Suppose that the kernel (x,t ) is a polynomial of degree (n − 1) in x, which can always
be represented in the form
$$a_0(x)+a_1(x)(x-t)$$
then how we take the values if a_0 and a_1
integration definite-integrals
integration definite-integrals
edited Oct 16 '14 at 19:17
nooray
asked Oct 15 '14 at 17:37
nooraynooray
65
65
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By using the Laplace transform and the convolution theorem, examples found here,
it is seen that for
begin{align}
mathcal{L}{ f(t) } = int_{0}^{infty} e^{- s t} f(t) , dt = f(s)
end{align}
then the integral equation
begin{align}
u(t)= 30 + 6t + int_{0}^{t} (5y-6y^2 )u(y)dy
end{align}
becomes
begin{align}
u(s)= frac{30}{s} + frac{6}{s^2} + left(frac{5}{s} - frac{12}{s^3} right) u(s).
end{align}
By solving for $u(s)$ the result becomes
begin{align}
u(s) = frac{6 s + 30 s^2}{s^3 - 5 s + 12}.
end{align}
Inversion of this yields
begin{align}
u(t) = frac{6}{77} , e^{-3 t} left[ 46 sqrt{7} , e^{frac{9 t}{2}} sinleft(frac{sqrt{7} t}{2} right) + 238 , e^{frac{9 t}{2}} cosleft(frac{sqrt{7} t}{2}right) + 147 right] .
end{align}
$endgroup$
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f975306%2ffind-the-resolvent-kernel-of-particular-form-of-volterra-integral-equation-of-se%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By using the Laplace transform and the convolution theorem, examples found here,
it is seen that for
begin{align}
mathcal{L}{ f(t) } = int_{0}^{infty} e^{- s t} f(t) , dt = f(s)
end{align}
then the integral equation
begin{align}
u(t)= 30 + 6t + int_{0}^{t} (5y-6y^2 )u(y)dy
end{align}
becomes
begin{align}
u(s)= frac{30}{s} + frac{6}{s^2} + left(frac{5}{s} - frac{12}{s^3} right) u(s).
end{align}
By solving for $u(s)$ the result becomes
begin{align}
u(s) = frac{6 s + 30 s^2}{s^3 - 5 s + 12}.
end{align}
Inversion of this yields
begin{align}
u(t) = frac{6}{77} , e^{-3 t} left[ 46 sqrt{7} , e^{frac{9 t}{2}} sinleft(frac{sqrt{7} t}{2} right) + 238 , e^{frac{9 t}{2}} cosleft(frac{sqrt{7} t}{2}right) + 147 right] .
end{align}
$endgroup$
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
add a comment |
$begingroup$
By using the Laplace transform and the convolution theorem, examples found here,
it is seen that for
begin{align}
mathcal{L}{ f(t) } = int_{0}^{infty} e^{- s t} f(t) , dt = f(s)
end{align}
then the integral equation
begin{align}
u(t)= 30 + 6t + int_{0}^{t} (5y-6y^2 )u(y)dy
end{align}
becomes
begin{align}
u(s)= frac{30}{s} + frac{6}{s^2} + left(frac{5}{s} - frac{12}{s^3} right) u(s).
end{align}
By solving for $u(s)$ the result becomes
begin{align}
u(s) = frac{6 s + 30 s^2}{s^3 - 5 s + 12}.
end{align}
Inversion of this yields
begin{align}
u(t) = frac{6}{77} , e^{-3 t} left[ 46 sqrt{7} , e^{frac{9 t}{2}} sinleft(frac{sqrt{7} t}{2} right) + 238 , e^{frac{9 t}{2}} cosleft(frac{sqrt{7} t}{2}right) + 147 right] .
end{align}
$endgroup$
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
add a comment |
$begingroup$
By using the Laplace transform and the convolution theorem, examples found here,
it is seen that for
begin{align}
mathcal{L}{ f(t) } = int_{0}^{infty} e^{- s t} f(t) , dt = f(s)
end{align}
then the integral equation
begin{align}
u(t)= 30 + 6t + int_{0}^{t} (5y-6y^2 )u(y)dy
end{align}
becomes
begin{align}
u(s)= frac{30}{s} + frac{6}{s^2} + left(frac{5}{s} - frac{12}{s^3} right) u(s).
end{align}
By solving for $u(s)$ the result becomes
begin{align}
u(s) = frac{6 s + 30 s^2}{s^3 - 5 s + 12}.
end{align}
Inversion of this yields
begin{align}
u(t) = frac{6}{77} , e^{-3 t} left[ 46 sqrt{7} , e^{frac{9 t}{2}} sinleft(frac{sqrt{7} t}{2} right) + 238 , e^{frac{9 t}{2}} cosleft(frac{sqrt{7} t}{2}right) + 147 right] .
end{align}
$endgroup$
By using the Laplace transform and the convolution theorem, examples found here,
it is seen that for
begin{align}
mathcal{L}{ f(t) } = int_{0}^{infty} e^{- s t} f(t) , dt = f(s)
end{align}
then the integral equation
begin{align}
u(t)= 30 + 6t + int_{0}^{t} (5y-6y^2 )u(y)dy
end{align}
becomes
begin{align}
u(s)= frac{30}{s} + frac{6}{s^2} + left(frac{5}{s} - frac{12}{s^3} right) u(s).
end{align}
By solving for $u(s)$ the result becomes
begin{align}
u(s) = frac{6 s + 30 s^2}{s^3 - 5 s + 12}.
end{align}
Inversion of this yields
begin{align}
u(t) = frac{6}{77} , e^{-3 t} left[ 46 sqrt{7} , e^{frac{9 t}{2}} sinleft(frac{sqrt{7} t}{2} right) + 238 , e^{frac{9 t}{2}} cosleft(frac{sqrt{7} t}{2}right) + 147 right] .
end{align}
answered Oct 15 '14 at 18:51
LeucippusLeucippus
19.7k102871
19.7k102871
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
add a comment |
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
we need to find out kernel $$k_1$$ to $$k_n$$
$endgroup$
– nooray
Oct 16 '14 at 11:30
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
$begingroup$
Any one solve it with alternative method
$endgroup$
– nooray
Oct 16 '14 at 19:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f975306%2ffind-the-resolvent-kernel-of-particular-form-of-volterra-integral-equation-of-se%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown