Find sum $u_0 u_1 + u_1u_2+…+u_{n-2}u_{n-1} $












3












$begingroup$


I have
$$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
And I should calculate:
$$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
But I have stucked:


Firstly I calculate
$$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
and put
$$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
and sum
$$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
$$u_{n-1}u_0 = e^{ipi} = -1 $$










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    I have
    $$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
    And I should calculate:
    $$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
    But I have stucked:


    Firstly I calculate
    $$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
    and put
    $$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
    and sum
    $$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
    $$u_{n-1}u_0 = e^{ipi} = -1 $$










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      0



      $begingroup$


      I have
      $$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
      And I should calculate:
      $$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
      But I have stucked:


      Firstly I calculate
      $$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
      and put
      $$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
      and sum
      $$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
      $$u_{n-1}u_0 = e^{ipi} = -1 $$










      share|cite|improve this question









      $endgroup$




      I have
      $$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
      And I should calculate:
      $$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
      But I have stucked:


      Firstly I calculate
      $$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
      and put
      $$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
      and sum
      $$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
      $$u_{n-1}u_0 = e^{ipi} = -1 $$







      complex-analysis summation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 1 at 16:07









      VirtualUserVirtualUser

      1,316317




      1,316317






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
          Therefore,
          $$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Here's a way without geometric sums.



              Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.



              By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.






              share|cite|improve this answer









              $endgroup$














                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096419%2ffind-sum-u-0-u-1-u-1u-2-u-n-2u-n-1%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
                Therefore,
                $$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$






                share|cite|improve this answer











                $endgroup$


















                  1












                  $begingroup$

                  Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
                  Therefore,
                  $$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$






                  share|cite|improve this answer











                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
                    Therefore,
                    $$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$






                    share|cite|improve this answer











                    $endgroup$



                    Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
                    Therefore,
                    $$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Feb 1 at 18:06

























                    answered Feb 1 at 17:12









                    Math LoverMath Lover

                    14.1k31437




                    14.1k31437























                        1












                        $begingroup$

                        Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.






                            share|cite|improve this answer









                            $endgroup$



                            Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 1 at 16:14









                            ArthurArthur

                            122k7122211




                            122k7122211























                                1












                                $begingroup$

                                Here's a way without geometric sums.



                                Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.



                                By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  Here's a way without geometric sums.



                                  Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.



                                  By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Here's a way without geometric sums.



                                    Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.



                                    By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.






                                    share|cite|improve this answer









                                    $endgroup$



                                    Here's a way without geometric sums.



                                    Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.



                                    By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Feb 1 at 16:31









                                    Gabriel RomonGabriel Romon

                                    18k53387




                                    18k53387






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096419%2ffind-sum-u-0-u-1-u-1u-2-u-n-2u-n-1%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        How to fix TextFormField cause rebuild widget in Flutter

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith