Find sum $u_0 u_1 + u_1u_2+…+u_{n-2}u_{n-1} $
$begingroup$
I have
$$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
And I should calculate:
$$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
But I have stucked:
Firstly I calculate
$$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
and put
$$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
and sum
$$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
$$u_{n-1}u_0 = e^{ipi} = -1 $$
complex-analysis summation
$endgroup$
add a comment |
$begingroup$
I have
$$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
And I should calculate:
$$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
But I have stucked:
Firstly I calculate
$$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
and put
$$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
and sum
$$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
$$u_{n-1}u_0 = e^{ipi} = -1 $$
complex-analysis summation
$endgroup$
add a comment |
$begingroup$
I have
$$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
And I should calculate:
$$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
But I have stucked:
Firstly I calculate
$$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
and put
$$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
and sum
$$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
$$u_{n-1}u_0 = e^{ipi} = -1 $$
complex-analysis summation
$endgroup$
I have
$$ u_k = cosfrac{2kpi}{n} + i sinfrac{2kpi}{n}$$
And I should calculate:
$$ u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1}+u_{n-1}u_0 $$
But I have stucked:
Firstly I calculate
$$u_0 u_1 + u_1u_2+...+u_{n-2}u_{n-1} $$
and put
$$ alpha_k = u_k cdot u_{k+1} = ... = e^{frac{ipi(2k+1)}{n}} $$
and sum
$$ alpha_0 + ... + alpha_{n-2} = ... = e^{frac{ipi}{n}} cdot frac{1-e^{frac{2(n-1)ipi}{n}}}{1-e^{frac{2ipi}{n}}}$$ and I don't know how ti finish that. If it comes to
$$u_{n-1}u_0 = e^{ipi} = -1 $$
complex-analysis summation
complex-analysis summation
asked Feb 1 at 16:07
VirtualUserVirtualUser
1,316317
1,316317
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
Therefore,
$$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$
$endgroup$
add a comment |
$begingroup$
Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.
$endgroup$
add a comment |
$begingroup$
Here's a way without geometric sums.
Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.
By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096419%2ffind-sum-u-0-u-1-u-1u-2-u-n-2u-n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
Therefore,
$$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$
$endgroup$
add a comment |
$begingroup$
Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
Therefore,
$$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$
$endgroup$
add a comment |
$begingroup$
Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
Therefore,
$$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$
$endgroup$
Note that $$alpha_k = u_{k}cdot u_{k+1} = e^{ifrac{2pi}{n}(2k+1)} = e^{ifrac{2pi}{n}}cdot e^{ifrac{4pi}{n}k}.$$
Therefore,
$$sum_{k=0}^{n-2}{alpha_k} = e^{ifrac{2pi}{n}}sum_{k=0}^{n-2}{left(e^{ifrac{4pi}{n}}right)^{k}} = e^{ifrac{2pi}{n}} frac{1-e^{ifrac{4pi(n-1)}{n}}}{1-e^{ifrac{4pi}{n}}} = e^{ifrac{2pi}{n}}frac{1-e^{-ifrac{4pi}{n}}}{1-e^{ifrac{4pi}{n}}} = frac{e^{i2pi/n}-e^{-i2pi/n}}{e^{i2pi/n}(e^{-i2pi/n}-e^{i2pi/n})}=-e^{-ifrac{2pi}{n}}.$$
edited Feb 1 at 18:06
answered Feb 1 at 17:12
Math LoverMath Lover
14.1k31437
14.1k31437
add a comment |
add a comment |
$begingroup$
Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.
$endgroup$
add a comment |
$begingroup$
Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.
$endgroup$
add a comment |
$begingroup$
Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.
$endgroup$
Hint: The points $u_k$, and therefore $alpha_k$, are distributed completely evenly along the unit circle.
answered Feb 1 at 16:14


ArthurArthur
122k7122211
122k7122211
add a comment |
add a comment |
$begingroup$
Here's a way without geometric sums.
Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.
By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.
$endgroup$
add a comment |
$begingroup$
Here's a way without geometric sums.
Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.
By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.
$endgroup$
add a comment |
$begingroup$
Here's a way without geometric sums.
Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.
By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.
$endgroup$
Here's a way without geometric sums.
Note that $u_{i+1} = u_i e^{2ipi/n}$ where $u_n:=u_0=1$, thus $sum_{k=0}^{n-1} u_iu_{i+1} = e^{2ipi/n} sum_{k=0}^{n-1} u_i^2$.
By Newton's identities $ sum_{k=0}^{n-1} u_i^2 = left(sum_{k=0}^{n-1} u_iright)^2- sum_{i,j}u_iu_j$. Since the $u_i$ are the roots of $X^n-1$, $sum_{k=0}^{n-1} u_i=0$ and $sum_{i,j}u_iu_j = 0$, thus $sum_{k=0}^{n-1} u_i^2=0$.
answered Feb 1 at 16:31


Gabriel RomonGabriel Romon
18k53387
18k53387
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096419%2ffind-sum-u-0-u-1-u-1u-2-u-n-2u-n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown