Finding density function of $operatorname{E}[Xmid Y]$ and $operatorname{E}[Ymid X]$
$begingroup$
$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.
I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?
conditional-expectation density-function expected-value
$endgroup$
|
show 1 more comment
$begingroup$
$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.
I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?
conditional-expectation density-function expected-value
$endgroup$
1
$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19
$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20
$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20
$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28
$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02
|
show 1 more comment
$begingroup$
$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.
I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?
conditional-expectation density-function expected-value
$endgroup$
$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.
I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?
conditional-expectation density-function expected-value
conditional-expectation density-function expected-value
edited Feb 1 at 15:17


Martin Sleziak
45k10122277
45k10122277
asked Oct 5 '17 at 0:14


Silvia RossiSilvia Rossi
452417
452417
1
$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19
$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20
$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20
$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28
$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02
|
show 1 more comment
1
$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19
$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20
$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20
$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28
$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02
1
1
$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19
$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19
$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20
$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20
$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20
$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20
$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28
$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28
$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02
$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
$newcommand{E}{operatorname{E}}$
$$
iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
$$
and thus this is indeed a probability density.
The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
$$
int_x^infty e^{-y},dy = e^{-x},
$$
the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
$$
E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
$$
so we can say
$$
E(Ymid X) = X+1.
$$
For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2458189%2ffinding-density-function-of-operatornameex-mid-y-and-operatornameey%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{E}{operatorname{E}}$
$$
iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
$$
and thus this is indeed a probability density.
The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
$$
int_x^infty e^{-y},dy = e^{-x},
$$
the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
$$
E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
$$
so we can say
$$
E(Ymid X) = X+1.
$$
For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.
$endgroup$
add a comment |
$begingroup$
$newcommand{E}{operatorname{E}}$
$$
iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
$$
and thus this is indeed a probability density.
The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
$$
int_x^infty e^{-y},dy = e^{-x},
$$
the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
$$
E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
$$
so we can say
$$
E(Ymid X) = X+1.
$$
For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.
$endgroup$
add a comment |
$begingroup$
$newcommand{E}{operatorname{E}}$
$$
iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
$$
and thus this is indeed a probability density.
The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
$$
int_x^infty e^{-y},dy = e^{-x},
$$
the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
$$
E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
$$
so we can say
$$
E(Ymid X) = X+1.
$$
For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.
$endgroup$
$newcommand{E}{operatorname{E}}$
$$
iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
$$
and thus this is indeed a probability density.
The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
$$
int_x^infty e^{-y},dy = e^{-x},
$$
the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
$$
E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
$$
so we can say
$$
E(Ymid X) = X+1.
$$
For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.
answered Oct 5 '17 at 0:35
Michael HardyMichael Hardy
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2458189%2ffinding-density-function-of-operatornameex-mid-y-and-operatornameey%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19
$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20
$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20
$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28
$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02