Finding density function of $operatorname{E}[Xmid Y]$ and $operatorname{E}[Ymid X]$












0












$begingroup$


$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.



I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:19










  • $begingroup$
    @MichaelHardy Sorry I didn't notice while typing, edited
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 0:20










  • $begingroup$
    Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:20












  • $begingroup$
    @d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 2:28












  • $begingroup$
    $X+1ge 1$. $f(T)$ is ok.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 3:02


















0












$begingroup$


$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.



I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:19










  • $begingroup$
    @MichaelHardy Sorry I didn't notice while typing, edited
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 0:20










  • $begingroup$
    Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:20












  • $begingroup$
    @d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 2:28












  • $begingroup$
    $X+1ge 1$. $f(T)$ is ok.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 3:02
















0












0








0





$begingroup$


$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.



I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?










share|cite|improve this question











$endgroup$




$newcommand{E}{operatorname{E}}$
Finding density function of $E[Xmid Y]$ and $E[Ymid X]$, where $E[Xmid Y]=Y/2$, $E[Ymid X]=X+1,$ $f(x,y)=e^{-y}$, and $0 leq x leq y$.



I am unsure on how to find the density of an expected value, could anyone please help me with the formula or method to use to find it?







conditional-expectation density-function expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 15:17









Martin Sleziak

45k10122277




45k10122277










asked Oct 5 '17 at 0:14









Silvia RossiSilvia Rossi

452417




452417








  • 1




    $begingroup$
    Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:19










  • $begingroup$
    @MichaelHardy Sorry I didn't notice while typing, edited
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 0:20










  • $begingroup$
    Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:20












  • $begingroup$
    @d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 2:28












  • $begingroup$
    $X+1ge 1$. $f(T)$ is ok.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 3:02
















  • 1




    $begingroup$
    Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:19










  • $begingroup$
    @MichaelHardy Sorry I didn't notice while typing, edited
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 0:20










  • $begingroup$
    Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 0:20












  • $begingroup$
    @d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
    $endgroup$
    – Silvia Rossi
    Oct 5 '17 at 2:28












  • $begingroup$
    $X+1ge 1$. $f(T)$ is ok.
    $endgroup$
    – d.k.o.
    Oct 5 '17 at 3:02










1




1




$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19




$begingroup$
Or $mathsf{E}[Ymid X=x]=x+1$, and $mathsf{E}[Xmid Y=y]=y/2$.
$endgroup$
– d.k.o.
Oct 5 '17 at 0:19












$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20




$begingroup$
@MichaelHardy Sorry I didn't notice while typing, edited
$endgroup$
– Silvia Rossi
Oct 5 '17 at 0:20












$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20






$begingroup$
Then is should be clear that you need to find the densities of $X+1$ and $Y/2$ given the joint distribution of $X$ and $Y$...
$endgroup$
– d.k.o.
Oct 5 '17 at 0:20














$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28






$begingroup$
@d.k.o. Could I use the transformation method? Let $W=X+1$. $f(W)=f(x) lvert{frac{dX}{dW}}rvert=e^{-x}(1)=e^{-x}$ And let $T=Y/2$. $f(T)=f(y) lvert{frac{dY}{dT}}rvert=ye^{-y}(2)=2ye^{-y}$
$endgroup$
– Silvia Rossi
Oct 5 '17 at 2:28














$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02






$begingroup$
$X+1ge 1$. $f(T)$ is ok.
$endgroup$
– d.k.o.
Oct 5 '17 at 3:02












1 Answer
1






active

oldest

votes


















0












$begingroup$

$newcommand{E}{operatorname{E}}$
$$
iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
$$
and thus this is indeed a probability density.



The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
$$
int_x^infty e^{-y},dy = e^{-x},
$$
the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
$$
E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
$$
so we can say
$$
E(Ymid X) = X+1.
$$
For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2458189%2ffinding-density-function-of-operatornameex-mid-y-and-operatornameey%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $newcommand{E}{operatorname{E}}$
    $$
    iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
    $$
    and thus this is indeed a probability density.



    The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
    $$
    int_x^infty e^{-y},dy = e^{-x},
    $$
    the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
    $$
    E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
    $$
    so we can say
    $$
    E(Ymid X) = X+1.
    $$
    For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $newcommand{E}{operatorname{E}}$
      $$
      iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
      $$
      and thus this is indeed a probability density.



      The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
      $$
      int_x^infty e^{-y},dy = e^{-x},
      $$
      the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
      $$
      E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
      $$
      so we can say
      $$
      E(Ymid X) = X+1.
      $$
      For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $newcommand{E}{operatorname{E}}$
        $$
        iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
        $$
        and thus this is indeed a probability density.



        The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
        $$
        int_x^infty e^{-y},dy = e^{-x},
        $$
        the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
        $$
        E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
        $$
        so we can say
        $$
        E(Ymid X) = X+1.
        $$
        For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.






        share|cite|improve this answer









        $endgroup$



        $newcommand{E}{operatorname{E}}$
        $$
        iintlimits_{{,(x,y),:, 0,le,x,le,y,}} e^{-y} , d(x,y) = int_0^infty left( int_x^infty e^{-y} , dy right) , dx = int_0^infty e^{-x} , dx = 1
        $$
        and thus this is indeed a probability density.



        The conditional density of $y$ given the event $X=x$ is $big( text{constant}cdot e^{-y} big)$ for $yge x.$ Since
        $$
        int_x^infty e^{-y},dy = e^{-x},
        $$
        the "constant" must be $1/e^{-x} = e^x.$ Thus the density is $e^x e^{-y} = e^{x-y} text{ for } yge x.$ The conditional expect value is therefore
        $$
        E(Ymid X=x) = int_x^infty e^{x-y} , dy = x+1,
        $$
        so we can say
        $$
        E(Ymid X) = X+1.
        $$
        For the conditional density of $X$ given $Y=y,$ note that the joint density does not depend on $x$ beyond the fact that $0le xle y,$ so the density is constant on the interval from $0$ to $y;$ in other words, given $Y=y,$ the conditional distribution of $X$ is the uniform distribution on that interval.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Oct 5 '17 at 0:35









        Michael HardyMichael Hardy

        1




        1






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2458189%2ffinding-density-function-of-operatornameex-mid-y-and-operatornameey%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter