How to prove this logical equivalence in predicate logic?












0












$begingroup$


Prove that:



$ ( forall x)(forall y)(exists z)((P(x)Rightarrow Q(y)) wedge neg Q(z))$



is equivalent with



$ neg((exists xP(x) lor forall zQ(z))$



How should I attempt such problems?
I tried a lot like changing the implication in a disjunction. I applied Morgan rules here and there...



It looks like I should use the transitivity rule to get rid of the Y but I didn't find how



EDIT: Corrected question, thanks to Mauro










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is there an $y$ missing in the first formula ?
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 30 at 13:51










  • $begingroup$
    Indeed, thanks!
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 13:54










  • $begingroup$
    Well in the case that $Q(y)$ for all $y$, then it is true for any specific choice of $y$, namely $z$. Hence we can replace $forall y(P(x) rightarrow Q(y))$ with $ (P(x) rightarrow Q(z)) $
    $endgroup$
    – NazimJ
    Jan 30 at 14:37
















0












$begingroup$


Prove that:



$ ( forall x)(forall y)(exists z)((P(x)Rightarrow Q(y)) wedge neg Q(z))$



is equivalent with



$ neg((exists xP(x) lor forall zQ(z))$



How should I attempt such problems?
I tried a lot like changing the implication in a disjunction. I applied Morgan rules here and there...



It looks like I should use the transitivity rule to get rid of the Y but I didn't find how



EDIT: Corrected question, thanks to Mauro










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is there an $y$ missing in the first formula ?
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 30 at 13:51










  • $begingroup$
    Indeed, thanks!
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 13:54










  • $begingroup$
    Well in the case that $Q(y)$ for all $y$, then it is true for any specific choice of $y$, namely $z$. Hence we can replace $forall y(P(x) rightarrow Q(y))$ with $ (P(x) rightarrow Q(z)) $
    $endgroup$
    – NazimJ
    Jan 30 at 14:37














0












0








0





$begingroup$


Prove that:



$ ( forall x)(forall y)(exists z)((P(x)Rightarrow Q(y)) wedge neg Q(z))$



is equivalent with



$ neg((exists xP(x) lor forall zQ(z))$



How should I attempt such problems?
I tried a lot like changing the implication in a disjunction. I applied Morgan rules here and there...



It looks like I should use the transitivity rule to get rid of the Y but I didn't find how



EDIT: Corrected question, thanks to Mauro










share|cite|improve this question











$endgroup$




Prove that:



$ ( forall x)(forall y)(exists z)((P(x)Rightarrow Q(y)) wedge neg Q(z))$



is equivalent with



$ neg((exists xP(x) lor forall zQ(z))$



How should I attempt such problems?
I tried a lot like changing the implication in a disjunction. I applied Morgan rules here and there...



It looks like I should use the transitivity rule to get rid of the Y but I didn't find how



EDIT: Corrected question, thanks to Mauro







logic predicate-logic






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 16:34









Mauro ALLEGRANZA

67.7k449117




67.7k449117










asked Jan 30 at 13:42









Ayoub RossiAyoub Rossi

11110




11110












  • $begingroup$
    Is there an $y$ missing in the first formula ?
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 30 at 13:51










  • $begingroup$
    Indeed, thanks!
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 13:54










  • $begingroup$
    Well in the case that $Q(y)$ for all $y$, then it is true for any specific choice of $y$, namely $z$. Hence we can replace $forall y(P(x) rightarrow Q(y))$ with $ (P(x) rightarrow Q(z)) $
    $endgroup$
    – NazimJ
    Jan 30 at 14:37


















  • $begingroup$
    Is there an $y$ missing in the first formula ?
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 30 at 13:51










  • $begingroup$
    Indeed, thanks!
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 13:54










  • $begingroup$
    Well in the case that $Q(y)$ for all $y$, then it is true for any specific choice of $y$, namely $z$. Hence we can replace $forall y(P(x) rightarrow Q(y))$ with $ (P(x) rightarrow Q(z)) $
    $endgroup$
    – NazimJ
    Jan 30 at 14:37
















$begingroup$
Is there an $y$ missing in the first formula ?
$endgroup$
– Mauro ALLEGRANZA
Jan 30 at 13:51




$begingroup$
Is there an $y$ missing in the first formula ?
$endgroup$
– Mauro ALLEGRANZA
Jan 30 at 13:51












$begingroup$
Indeed, thanks!
$endgroup$
– Ayoub Rossi
Jan 30 at 13:54




$begingroup$
Indeed, thanks!
$endgroup$
– Ayoub Rossi
Jan 30 at 13:54












$begingroup$
Well in the case that $Q(y)$ for all $y$, then it is true for any specific choice of $y$, namely $z$. Hence we can replace $forall y(P(x) rightarrow Q(y))$ with $ (P(x) rightarrow Q(z)) $
$endgroup$
– NazimJ
Jan 30 at 14:37




$begingroup$
Well in the case that $Q(y)$ for all $y$, then it is true for any specific choice of $y$, namely $z$. Hence we can replace $forall y(P(x) rightarrow Q(y))$ with $ (P(x) rightarrow Q(z)) $
$endgroup$
– NazimJ
Jan 30 at 14:37










2 Answers
2






active

oldest

votes


















0












$begingroup$

Hint



We have to work with Prenex normal form equivalences.



The first formula is equivalent to :




$((∃x)P(x) to (∀y)Q(y)) ∧ (∃z)¬Q(z)$.




By De Morgan, the second formula is :




$¬(∃x) P(x) ∧ ¬(∀z)Q(z)$, i.e. $¬(∃x) P(x) ∧ (∃z)¬Q(z)$.




The first one implies the second : if we have that $(∃z)¬Q(z)$ holds, then it is false that $(∀y)Q(y)$ and thus also $(∃x)P(x)$ is false.



Thus : $¬(∃x) P(x)$ holds.



The second one implies the first : if $¬(∃x) P(x)$ holds, then $(∃x)P(x) to R$ holds, for $R$ whatever.



Thus : $(∃x)P(x) to (∀y)Q(y)$ holds.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 17:04










  • $begingroup$
    Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 17:06



















0












$begingroup$

$ forall x forall y exists z((P(x)rightarrow Q(y)) land neg Q(z)) overset{Prenex}{Leftrightarrow}$



$ forall x forall y ((P(x)rightarrow Q(y)) land exists z neg Q(z)) overset{Implication}{Leftrightarrow}$



$ forall x forall y ((neg P(x) lor Q(y)) land exists z neg Q(z))) overset{Distribution}{Leftrightarrow}$



$ forall x forall y ((neg P(x) land exists z neg Q(z)) lor ((Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



$ forall x (neg P(x) land exists z neg Q(z)) lor forall y (Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



$ ( forall x neg P(x) land exists z neg Q(z)) lor (forall y Q(y) land exists z neg Q(z)) overset{Quantifier Negation}{Leftrightarrow}$



$ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall z Q(z)) overset{Replacing Variables}{Leftrightarrow}$



$ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall y Q(y)) overset{Complement}{Leftrightarrow}$



$ (neg exists x P(x) land neg forall z Q(z)) lor bot overset{Identity}{Leftrightarrow}$



$ neg exists x P(x) land neg forall z Q(z)overset{DeMorgan}{Leftrightarrow}$



$ neg( exists x P(x) lor neg forall z Q(z))$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093536%2fhow-to-prove-this-logical-equivalence-in-predicate-logic%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Hint



    We have to work with Prenex normal form equivalences.



    The first formula is equivalent to :




    $((∃x)P(x) to (∀y)Q(y)) ∧ (∃z)¬Q(z)$.




    By De Morgan, the second formula is :




    $¬(∃x) P(x) ∧ ¬(∀z)Q(z)$, i.e. $¬(∃x) P(x) ∧ (∃z)¬Q(z)$.




    The first one implies the second : if we have that $(∃z)¬Q(z)$ holds, then it is false that $(∀y)Q(y)$ and thus also $(∃x)P(x)$ is false.



    Thus : $¬(∃x) P(x)$ holds.



    The second one implies the first : if $¬(∃x) P(x)$ holds, then $(∃x)P(x) to R$ holds, for $R$ whatever.



    Thus : $(∃x)P(x) to (∀y)Q(y)$ holds.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:04










    • $begingroup$
      Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:06
















    0












    $begingroup$

    Hint



    We have to work with Prenex normal form equivalences.



    The first formula is equivalent to :




    $((∃x)P(x) to (∀y)Q(y)) ∧ (∃z)¬Q(z)$.




    By De Morgan, the second formula is :




    $¬(∃x) P(x) ∧ ¬(∀z)Q(z)$, i.e. $¬(∃x) P(x) ∧ (∃z)¬Q(z)$.




    The first one implies the second : if we have that $(∃z)¬Q(z)$ holds, then it is false that $(∀y)Q(y)$ and thus also $(∃x)P(x)$ is false.



    Thus : $¬(∃x) P(x)$ holds.



    The second one implies the first : if $¬(∃x) P(x)$ holds, then $(∃x)P(x) to R$ holds, for $R$ whatever.



    Thus : $(∃x)P(x) to (∀y)Q(y)$ holds.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:04










    • $begingroup$
      Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:06














    0












    0








    0





    $begingroup$

    Hint



    We have to work with Prenex normal form equivalences.



    The first formula is equivalent to :




    $((∃x)P(x) to (∀y)Q(y)) ∧ (∃z)¬Q(z)$.




    By De Morgan, the second formula is :




    $¬(∃x) P(x) ∧ ¬(∀z)Q(z)$, i.e. $¬(∃x) P(x) ∧ (∃z)¬Q(z)$.




    The first one implies the second : if we have that $(∃z)¬Q(z)$ holds, then it is false that $(∀y)Q(y)$ and thus also $(∃x)P(x)$ is false.



    Thus : $¬(∃x) P(x)$ holds.



    The second one implies the first : if $¬(∃x) P(x)$ holds, then $(∃x)P(x) to R$ holds, for $R$ whatever.



    Thus : $(∃x)P(x) to (∀y)Q(y)$ holds.






    share|cite|improve this answer









    $endgroup$



    Hint



    We have to work with Prenex normal form equivalences.



    The first formula is equivalent to :




    $((∃x)P(x) to (∀y)Q(y)) ∧ (∃z)¬Q(z)$.




    By De Morgan, the second formula is :




    $¬(∃x) P(x) ∧ ¬(∀z)Q(z)$, i.e. $¬(∃x) P(x) ∧ (∃z)¬Q(z)$.




    The first one implies the second : if we have that $(∃z)¬Q(z)$ holds, then it is false that $(∀y)Q(y)$ and thus also $(∃x)P(x)$ is false.



    Thus : $¬(∃x) P(x)$ holds.



    The second one implies the first : if $¬(∃x) P(x)$ holds, then $(∃x)P(x) to R$ holds, for $R$ whatever.



    Thus : $(∃x)P(x) to (∀y)Q(y)$ holds.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 30 at 16:34









    Mauro ALLEGRANZAMauro ALLEGRANZA

    67.7k449117




    67.7k449117












    • $begingroup$
      One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:04










    • $begingroup$
      Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:06


















    • $begingroup$
      One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:04










    • $begingroup$
      Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
      $endgroup$
      – Ayoub Rossi
      Jan 30 at 17:06
















    $begingroup$
    One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 17:04




    $begingroup$
    One question: You say we have to work with prenex normal form but your first step switches to a non-prenex normal form if I'm not wrong?
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 17:04












    $begingroup$
    Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 17:06




    $begingroup$
    Second question: If I recognize a prenex normal form, should I always switch to an equivalent in non-prenex form
    $endgroup$
    – Ayoub Rossi
    Jan 30 at 17:06











    0












    $begingroup$

    $ forall x forall y exists z((P(x)rightarrow Q(y)) land neg Q(z)) overset{Prenex}{Leftrightarrow}$



    $ forall x forall y ((P(x)rightarrow Q(y)) land exists z neg Q(z)) overset{Implication}{Leftrightarrow}$



    $ forall x forall y ((neg P(x) lor Q(y)) land exists z neg Q(z))) overset{Distribution}{Leftrightarrow}$



    $ forall x forall y ((neg P(x) land exists z neg Q(z)) lor ((Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



    $ forall x (neg P(x) land exists z neg Q(z)) lor forall y (Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



    $ ( forall x neg P(x) land exists z neg Q(z)) lor (forall y Q(y) land exists z neg Q(z)) overset{Quantifier Negation}{Leftrightarrow}$



    $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall z Q(z)) overset{Replacing Variables}{Leftrightarrow}$



    $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall y Q(y)) overset{Complement}{Leftrightarrow}$



    $ (neg exists x P(x) land neg forall z Q(z)) lor bot overset{Identity}{Leftrightarrow}$



    $ neg exists x P(x) land neg forall z Q(z)overset{DeMorgan}{Leftrightarrow}$



    $ neg( exists x P(x) lor neg forall z Q(z))$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      $ forall x forall y exists z((P(x)rightarrow Q(y)) land neg Q(z)) overset{Prenex}{Leftrightarrow}$



      $ forall x forall y ((P(x)rightarrow Q(y)) land exists z neg Q(z)) overset{Implication}{Leftrightarrow}$



      $ forall x forall y ((neg P(x) lor Q(y)) land exists z neg Q(z))) overset{Distribution}{Leftrightarrow}$



      $ forall x forall y ((neg P(x) land exists z neg Q(z)) lor ((Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



      $ forall x (neg P(x) land exists z neg Q(z)) lor forall y (Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



      $ ( forall x neg P(x) land exists z neg Q(z)) lor (forall y Q(y) land exists z neg Q(z)) overset{Quantifier Negation}{Leftrightarrow}$



      $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall z Q(z)) overset{Replacing Variables}{Leftrightarrow}$



      $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall y Q(y)) overset{Complement}{Leftrightarrow}$



      $ (neg exists x P(x) land neg forall z Q(z)) lor bot overset{Identity}{Leftrightarrow}$



      $ neg exists x P(x) land neg forall z Q(z)overset{DeMorgan}{Leftrightarrow}$



      $ neg( exists x P(x) lor neg forall z Q(z))$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        $ forall x forall y exists z((P(x)rightarrow Q(y)) land neg Q(z)) overset{Prenex}{Leftrightarrow}$



        $ forall x forall y ((P(x)rightarrow Q(y)) land exists z neg Q(z)) overset{Implication}{Leftrightarrow}$



        $ forall x forall y ((neg P(x) lor Q(y)) land exists z neg Q(z))) overset{Distribution}{Leftrightarrow}$



        $ forall x forall y ((neg P(x) land exists z neg Q(z)) lor ((Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



        $ forall x (neg P(x) land exists z neg Q(z)) lor forall y (Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



        $ ( forall x neg P(x) land exists z neg Q(z)) lor (forall y Q(y) land exists z neg Q(z)) overset{Quantifier Negation}{Leftrightarrow}$



        $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall z Q(z)) overset{Replacing Variables}{Leftrightarrow}$



        $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall y Q(y)) overset{Complement}{Leftrightarrow}$



        $ (neg exists x P(x) land neg forall z Q(z)) lor bot overset{Identity}{Leftrightarrow}$



        $ neg exists x P(x) land neg forall z Q(z)overset{DeMorgan}{Leftrightarrow}$



        $ neg( exists x P(x) lor neg forall z Q(z))$






        share|cite|improve this answer











        $endgroup$



        $ forall x forall y exists z((P(x)rightarrow Q(y)) land neg Q(z)) overset{Prenex}{Leftrightarrow}$



        $ forall x forall y ((P(x)rightarrow Q(y)) land exists z neg Q(z)) overset{Implication}{Leftrightarrow}$



        $ forall x forall y ((neg P(x) lor Q(y)) land exists z neg Q(z))) overset{Distribution}{Leftrightarrow}$



        $ forall x forall y ((neg P(x) land exists z neg Q(z)) lor ((Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



        $ forall x (neg P(x) land exists z neg Q(z)) lor forall y (Q(y) land exists z neg Q(z)) overset{Prenex x 2}{Leftrightarrow}$



        $ ( forall x neg P(x) land exists z neg Q(z)) lor (forall y Q(y) land exists z neg Q(z)) overset{Quantifier Negation}{Leftrightarrow}$



        $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall z Q(z)) overset{Replacing Variables}{Leftrightarrow}$



        $ (neg exists x P(x) land neg forall z Q(z)) lor (forall y Q(y) land neg forall y Q(y)) overset{Complement}{Leftrightarrow}$



        $ (neg exists x P(x) land neg forall z Q(z)) lor bot overset{Identity}{Leftrightarrow}$



        $ neg exists x P(x) land neg forall z Q(z)overset{DeMorgan}{Leftrightarrow}$



        $ neg( exists x P(x) lor neg forall z Q(z))$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 31 at 0:37

























        answered Jan 30 at 22:39









        Bram28Bram28

        64.2k44793




        64.2k44793






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093536%2fhow-to-prove-this-logical-equivalence-in-predicate-logic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith