How to read, transpose, and stack rows based on whether a row value is the same across them
I have a raw dataset in an Excel spreadsheet that looks like this (snippet):
SampleNbr A B C
1 2.0 5.0 0.6
1 6.0 7.0 0.3
2 9.2 4.0 0.5
2 7.3 5.5 0.4
What I would like to do is convert this to something that looks like this:
A 2.0 9.2
B 5.0 4.0
C 0.6 0.5
A 6.0 7.3
B 7.0 5.5
C 0.3 0.4
In other words, where the sample number is the same, read the row values, transpose into a column, and stack them. It seems I need a mask to represent groups of rows where the sample number value is the same, but I'm not sure if I need to write a function to do the read, transpose, append.
pandas
add a comment |
I have a raw dataset in an Excel spreadsheet that looks like this (snippet):
SampleNbr A B C
1 2.0 5.0 0.6
1 6.0 7.0 0.3
2 9.2 4.0 0.5
2 7.3 5.5 0.4
What I would like to do is convert this to something that looks like this:
A 2.0 9.2
B 5.0 4.0
C 0.6 0.5
A 6.0 7.3
B 7.0 5.5
C 0.3 0.4
In other words, where the sample number is the same, read the row values, transpose into a column, and stack them. It seems I need a mask to represent groups of rows where the sample number value is the same, but I'm not sure if I need to write a function to do the read, transpose, append.
pandas
is the answer i gave below useful for u?
– Sander van den Oord
Jan 4 at 20:03
add a comment |
I have a raw dataset in an Excel spreadsheet that looks like this (snippet):
SampleNbr A B C
1 2.0 5.0 0.6
1 6.0 7.0 0.3
2 9.2 4.0 0.5
2 7.3 5.5 0.4
What I would like to do is convert this to something that looks like this:
A 2.0 9.2
B 5.0 4.0
C 0.6 0.5
A 6.0 7.3
B 7.0 5.5
C 0.3 0.4
In other words, where the sample number is the same, read the row values, transpose into a column, and stack them. It seems I need a mask to represent groups of rows where the sample number value is the same, but I'm not sure if I need to write a function to do the read, transpose, append.
pandas
I have a raw dataset in an Excel spreadsheet that looks like this (snippet):
SampleNbr A B C
1 2.0 5.0 0.6
1 6.0 7.0 0.3
2 9.2 4.0 0.5
2 7.3 5.5 0.4
What I would like to do is convert this to something that looks like this:
A 2.0 9.2
B 5.0 4.0
C 0.6 0.5
A 6.0 7.3
B 7.0 5.5
C 0.3 0.4
In other words, where the sample number is the same, read the row values, transpose into a column, and stack them. It seems I need a mask to represent groups of rows where the sample number value is the same, but I'm not sure if I need to write a function to do the read, transpose, append.
pandas
pandas
edited Jan 2 at 21:31


MikeTheLiar
3,52873660
3,52873660
asked Jan 2 at 21:30
juliebjulieb
53
53
is the answer i gave below useful for u?
– Sander van den Oord
Jan 4 at 20:03
add a comment |
is the answer i gave below useful for u?
– Sander van den Oord
Jan 4 at 20:03
is the answer i gave below useful for u?
– Sander van den Oord
Jan 4 at 20:03
is the answer i gave below useful for u?
– Sander van den Oord
Jan 4 at 20:03
add a comment |
1 Answer
1
active
oldest
votes
The following should work:
your_data = {
'SampleNbr': {0: 1, 1: 1, 2: 2, 3: 2},
'A': {0: 2.0, 1: 6.0, 2: 9.2, 3: 7.3},
'B': {0: 5.0, 1: 7.0, 2: 4.0, 3: 5.5},
'C': {0: 0.6, 1: 0.3, 2: 0.5, 3: 0.4}
}
df = pd.DataFrame(your_data)
df['order'] = df.groupby('SampleNbr').cumcount()
df = (df
.groupby(['order','SampleNbr'])['A','B','C'].sum()
.stack(0)
.unstack(1)
.reset_index(level=0, drop=True)
)
print(df)
SampleNbr 1 2
A 2.000 9.200
B 5.000 4.000
C 0.600 0.500
A 6.000 7.300
B 7.000 5.500
C 0.300 0.400
add a comment |
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54013418%2fhow-to-read-transpose-and-stack-rows-based-on-whether-a-row-value-is-the-same%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The following should work:
your_data = {
'SampleNbr': {0: 1, 1: 1, 2: 2, 3: 2},
'A': {0: 2.0, 1: 6.0, 2: 9.2, 3: 7.3},
'B': {0: 5.0, 1: 7.0, 2: 4.0, 3: 5.5},
'C': {0: 0.6, 1: 0.3, 2: 0.5, 3: 0.4}
}
df = pd.DataFrame(your_data)
df['order'] = df.groupby('SampleNbr').cumcount()
df = (df
.groupby(['order','SampleNbr'])['A','B','C'].sum()
.stack(0)
.unstack(1)
.reset_index(level=0, drop=True)
)
print(df)
SampleNbr 1 2
A 2.000 9.200
B 5.000 4.000
C 0.600 0.500
A 6.000 7.300
B 7.000 5.500
C 0.300 0.400
add a comment |
The following should work:
your_data = {
'SampleNbr': {0: 1, 1: 1, 2: 2, 3: 2},
'A': {0: 2.0, 1: 6.0, 2: 9.2, 3: 7.3},
'B': {0: 5.0, 1: 7.0, 2: 4.0, 3: 5.5},
'C': {0: 0.6, 1: 0.3, 2: 0.5, 3: 0.4}
}
df = pd.DataFrame(your_data)
df['order'] = df.groupby('SampleNbr').cumcount()
df = (df
.groupby(['order','SampleNbr'])['A','B','C'].sum()
.stack(0)
.unstack(1)
.reset_index(level=0, drop=True)
)
print(df)
SampleNbr 1 2
A 2.000 9.200
B 5.000 4.000
C 0.600 0.500
A 6.000 7.300
B 7.000 5.500
C 0.300 0.400
add a comment |
The following should work:
your_data = {
'SampleNbr': {0: 1, 1: 1, 2: 2, 3: 2},
'A': {0: 2.0, 1: 6.0, 2: 9.2, 3: 7.3},
'B': {0: 5.0, 1: 7.0, 2: 4.0, 3: 5.5},
'C': {0: 0.6, 1: 0.3, 2: 0.5, 3: 0.4}
}
df = pd.DataFrame(your_data)
df['order'] = df.groupby('SampleNbr').cumcount()
df = (df
.groupby(['order','SampleNbr'])['A','B','C'].sum()
.stack(0)
.unstack(1)
.reset_index(level=0, drop=True)
)
print(df)
SampleNbr 1 2
A 2.000 9.200
B 5.000 4.000
C 0.600 0.500
A 6.000 7.300
B 7.000 5.500
C 0.300 0.400
The following should work:
your_data = {
'SampleNbr': {0: 1, 1: 1, 2: 2, 3: 2},
'A': {0: 2.0, 1: 6.0, 2: 9.2, 3: 7.3},
'B': {0: 5.0, 1: 7.0, 2: 4.0, 3: 5.5},
'C': {0: 0.6, 1: 0.3, 2: 0.5, 3: 0.4}
}
df = pd.DataFrame(your_data)
df['order'] = df.groupby('SampleNbr').cumcount()
df = (df
.groupby(['order','SampleNbr'])['A','B','C'].sum()
.stack(0)
.unstack(1)
.reset_index(level=0, drop=True)
)
print(df)
SampleNbr 1 2
A 2.000 9.200
B 5.000 4.000
C 0.600 0.500
A 6.000 7.300
B 7.000 5.500
C 0.300 0.400
answered Jan 3 at 20:48
Sander van den OordSander van den Oord
715520
715520
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54013418%2fhow-to-read-transpose-and-stack-rows-based-on-whether-a-row-value-is-the-same%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
is the answer i gave below useful for u?
– Sander van den Oord
Jan 4 at 20:03