if a, b, c, k ∈ R , Compute the following limit
$begingroup$
$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$
If we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$
f we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule again.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$
multiply the -ve sign
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$
remove -ve signs and reverse limits
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
Take 2 common
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$
plugin the limit for x
$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$
$L = frac { 2 } { 1 } ( 0 ) = 0$
Is this correct?
definite-integrals indefinite-integrals
$endgroup$
add a comment |
$begingroup$
$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$
If we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$
f we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule again.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$
multiply the -ve sign
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$
remove -ve signs and reverse limits
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
Take 2 common
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$
plugin the limit for x
$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$
$L = frac { 2 } { 1 } ( 0 ) = 0$
Is this correct?
definite-integrals indefinite-integrals
$endgroup$
1
$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44
add a comment |
$begingroup$
$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$
If we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$
f we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule again.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$
multiply the -ve sign
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$
remove -ve signs and reverse limits
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
Take 2 common
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$
plugin the limit for x
$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$
$L = frac { 2 } { 1 } ( 0 ) = 0$
Is this correct?
definite-integrals indefinite-integrals
$endgroup$
$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$
If we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$
$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$
f we plugin limit, we will get 0/0 form.
Hence we can apply LHospitals rule again.
diff denominator wrt x and diff numerator wrt t
$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$
multiply the -ve sign
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$
remove -ve signs and reverse limits
$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
Take 2 common
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$
plugin the limits
$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$
plugin the limit for x
$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$
$L = frac { 2 } { 1 } ( 0 ) = 0$
Is this correct?
definite-integrals indefinite-integrals
definite-integrals indefinite-integrals
edited Jan 30 at 8:31
Tariro Manyika
asked Jan 30 at 8:22
Tariro ManyikaTariro Manyika
619
619
1
$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44
add a comment |
1
$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44
1
1
$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44
$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
No... Keep in mind that
$$
frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
$$
so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.
$endgroup$
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
add a comment |
$begingroup$
Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$
Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$
$= F ( k t ) - F ( c t )$
So numerator becomes :-
$int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$
$= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$
So we need to evaluate the limit :-
$L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$
This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-
$ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$
Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$
such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$
So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$
$= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$
$= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$
But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-
$L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$
$ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$
This is still $frac{0}{0}$ form. So use L'Hopital's once more to get
$ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$
$ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$
As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-
$frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$
$frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$
and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,
$L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$
$= - [ b ( k b - c b ) + a ( c a - k a ) ]$
Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$
So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$
$= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$
$= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093240%2fif-a-b-c-k-%25e2%2588%2588-r-compute-the-following-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No... Keep in mind that
$$
frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
$$
so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.
$endgroup$
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
add a comment |
$begingroup$
No... Keep in mind that
$$
frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
$$
so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.
$endgroup$
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
add a comment |
$begingroup$
No... Keep in mind that
$$
frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
$$
so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.
$endgroup$
No... Keep in mind that
$$
frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
$$
so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.
answered Jan 30 at 8:37


PierreCarrePierreCarre
1,692212
1,692212
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
add a comment |
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
$begingroup$
thank , piece of cake :)
$endgroup$
– Tariro Manyika
Jan 30 at 9:50
add a comment |
$begingroup$
Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$
Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$
$= F ( k t ) - F ( c t )$
So numerator becomes :-
$int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$
$= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$
So we need to evaluate the limit :-
$L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$
This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-
$ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$
Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$
such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$
So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$
$= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$
$= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$
But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-
$L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$
$ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$
This is still $frac{0}{0}$ form. So use L'Hopital's once more to get
$ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$
$ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$
As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-
$frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$
$frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$
and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,
$L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$
$= - [ b ( k b - c b ) + a ( c a - k a ) ]$
Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$
So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$
$= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$
$= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$
$endgroup$
add a comment |
$begingroup$
Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$
Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$
$= F ( k t ) - F ( c t )$
So numerator becomes :-
$int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$
$= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$
So we need to evaluate the limit :-
$L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$
This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-
$ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$
Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$
such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$
So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$
$= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$
$= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$
But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-
$L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$
$ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$
This is still $frac{0}{0}$ form. So use L'Hopital's once more to get
$ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$
$ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$
As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-
$frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$
$frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$
and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,
$L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$
$= - [ b ( k b - c b ) + a ( c a - k a ) ]$
Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$
So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$
$= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$
$= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$
$endgroup$
add a comment |
$begingroup$
Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$
Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$
$= F ( k t ) - F ( c t )$
So numerator becomes :-
$int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$
$= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$
So we need to evaluate the limit :-
$L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$
This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-
$ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$
Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$
such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$
So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$
$= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$
$= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$
But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-
$L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$
$ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$
This is still $frac{0}{0}$ form. So use L'Hopital's once more to get
$ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$
$ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$
As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-
$frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$
$frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$
and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,
$L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$
$= - [ b ( k b - c b ) + a ( c a - k a ) ]$
Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$
So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$
$= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$
$= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$
$endgroup$
Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$
Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$
$= F ( k t ) - F ( c t )$
So numerator becomes :-
$int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$
$= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$
So we need to evaluate the limit :-
$L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$
This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-
$ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$
Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$
such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$
So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$
$= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$
$= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$
But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-
$L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$
$ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$
This is still $frac{0}{0}$ form. So use L'Hopital's once more to get
$ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$
$ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$
As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-
$frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$
$frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$
$frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$
and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,
$L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$
$= - [ b ( k b - c b ) + a ( c a - k a ) ]$
Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$
So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$
$= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$
$= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$
answered Jan 31 at 15:39
Tariro ManyikaTariro Manyika
619
619
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093240%2fif-a-b-c-k-%25e2%2588%2588-r-compute-the-following-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44