if a, b, c, k ∈ R , Compute the following limit












0












$begingroup$


$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$



If we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$



f we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule again.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$



multiply the -ve sign



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$



remove -ve signs and reverse limits



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



Take 2 common



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$



plugin the limit for x



$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$



$L = frac { 2 } { 1 } ( 0 ) = 0$



Is this correct?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
    $endgroup$
    – Claude Leibovici
    Jan 30 at 8:44


















0












$begingroup$


$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$



If we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$



f we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule again.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$



multiply the -ve sign



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$



remove -ve signs and reverse limits



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



Take 2 common



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$



plugin the limit for x



$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$



$L = frac { 2 } { 1 } ( 0 ) = 0$



Is this correct?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
    $endgroup$
    – Claude Leibovici
    Jan 30 at 8:44
















0












0








0





$begingroup$


$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$



If we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$



f we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule again.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$



multiply the -ve sign



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$



remove -ve signs and reverse limits



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



Take 2 common



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$



plugin the limit for x



$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$



$L = frac { 2 } { 1 } ( 0 ) = 0$



Is this correct?










share|cite|improve this question











$endgroup$




$lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t } { cos x - 1 }$



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x - 1 } left[ int _ { a x } ^ { b x } left( int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right) d t right]$



If we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] _ { a x } ^ { b x }$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c ( b x ) } ^ { k ( b x ) } e ^ { - s ^ { 2 } } d s - int _ { c ( a x ) } ^ { k ( a x ) } e ^ { - s ^ { 2 } } d s right]$



$L = lim _ { x rightarrow 0 } frac { 1 } { - sin x } left[ int _ { c b x } ^ { k b x } e ^ { - s ^ { 2 } } d s - int _ { c a x } ^ { k a x } e ^ { - s ^ { 2 } } d s right]$



f we plugin limit, we will get 0/0 form.



Hence we can apply LHospitals rule again.



diff denominator wrt x and diff numerator wrt t



$L = lim _ { x rightarrow 0 } frac { 1 } { - cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c a x } ^ { k a x } right)$



multiply the -ve sign



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ - 2 s e ^ { - s ^ { 2 } } right] _ { operatorname { cax } } ^ { k a x } - left[ - 2 s e ^ { - s ^ { 2 } } right] _ { c b x } ^ { k b x } right)$



remove -ve signs and reverse limits



$L = lim _ { x rightarrow 0 } frac { 1 } { cos x } left( left[ 2 s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ 2 s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



Take 2 common



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ s e ^ { - s ^ { 2 } } right] _ { k a x } ^ { operatorname { cax } } - left[ s e ^ { - s ^ { 2 } } right] _ { k b x } ^ { c b x } right)$



plugin the limits



$L = lim _ { x rightarrow 0 } frac { 2 } { cos x } left( left[ operatorname { caxe } ^ { - c ^ { 2 } a ^ { 2 } x ^ { 2 } } - k a x e ^ { - k ^ { 2 } a ^ { 2 } x ^ { 2 } } right] - left[ c b x e ^ { - c ^ { 2 } b ^ { 2 } x ^ { 2 } } - k b x e ^ { - k ^ { 2 } b ^ { 2 } x ^ { 2 } } right] right)$



plugin the limit for x



$L = frac { 2 } { cos 0 } ( [ 0 - 0 ] - [ 0 - 0 ] )$



$L = frac { 2 } { 1 } ( 0 ) = 0$



Is this correct?







definite-integrals indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 8:31







Tariro Manyika

















asked Jan 30 at 8:22









Tariro ManyikaTariro Manyika

619




619








  • 1




    $begingroup$
    Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
    $endgroup$
    – Claude Leibovici
    Jan 30 at 8:44
















  • 1




    $begingroup$
    Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
    $endgroup$
    – Claude Leibovici
    Jan 30 at 8:44










1




1




$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44






$begingroup$
Are you supposed to know the result of $int e^{-s^2},ds$ ? If yes, you could make the problem much shorter.
$endgroup$
– Claude Leibovici
Jan 30 at 8:44












2 Answers
2






active

oldest

votes


















1












$begingroup$

No... Keep in mind that
$$
frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
$$



so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank , piece of cake :)
    $endgroup$
    – Tariro Manyika
    Jan 30 at 9:50



















0












$begingroup$

Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$



Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$



$= F ( k t ) - F ( c t )$



So numerator becomes :-



$int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$



$= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$



So we need to evaluate the limit :-



$L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$



This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-



$ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$



Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$



such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$



So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$



$= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$



$= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$



But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-



$L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$



$ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$



This is still $frac{0}{0}$ form. So use L'Hopital's once more to get



$ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$



$ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$



As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-



$frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$



$frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$



$frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$



$frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$



and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,



$L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$



$= - [ b ( k b - c b ) + a ( c a - k a ) ]$



Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$



So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$



$= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$



$= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093240%2fif-a-b-c-k-%25e2%2588%2588-r-compute-the-following-limit%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    No... Keep in mind that
    $$
    frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
    $$



    so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      thank , piece of cake :)
      $endgroup$
      – Tariro Manyika
      Jan 30 at 9:50
















    1












    $begingroup$

    No... Keep in mind that
    $$
    frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
    $$



    so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      thank , piece of cake :)
      $endgroup$
      – Tariro Manyika
      Jan 30 at 9:50














    1












    1








    1





    $begingroup$

    No... Keep in mind that
    $$
    frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
    $$



    so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.






    share|cite|improve this answer









    $endgroup$



    No... Keep in mind that
    $$
    frac{d}{dx} int_{alpha(x)}^{beta(x)} f(s) ds = beta'(x) f(beta(x))-alpha'(x) f(alpha(x))
    $$



    so you see that you are missing some multiplicative constants relative to the derivatives of the integration limits. The correct answer is $(b^2-a^2)(c-k)$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 30 at 8:37









    PierreCarrePierreCarre

    1,692212




    1,692212












    • $begingroup$
      thank , piece of cake :)
      $endgroup$
      – Tariro Manyika
      Jan 30 at 9:50


















    • $begingroup$
      thank , piece of cake :)
      $endgroup$
      – Tariro Manyika
      Jan 30 at 9:50
















    $begingroup$
    thank , piece of cake :)
    $endgroup$
    – Tariro Manyika
    Jan 30 at 9:50




    $begingroup$
    thank , piece of cake :)
    $endgroup$
    – Tariro Manyika
    Jan 30 at 9:50











    0












    $begingroup$

    Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$



    Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$



    $= F ( k t ) - F ( c t )$



    So numerator becomes :-



    $int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$



    $= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$



    So we need to evaluate the limit :-



    $L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$



    This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-



    $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$



    Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$



    such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$



    So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$



    $= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$



    $= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$



    But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-



    $L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$



    $ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$



    This is still $frac{0}{0}$ form. So use L'Hopital's once more to get



    $ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$



    $ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$



    As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-



    $frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$



    $frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$



    $frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$



    $frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$



    and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,



    $L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$



    $= - [ b ( k b - c b ) + a ( c a - k a ) ]$



    Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$



    So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$



    $= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$



    $= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$



      Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$



      $= F ( k t ) - F ( c t )$



      So numerator becomes :-



      $int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$



      $= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$



      So we need to evaluate the limit :-



      $L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$



      This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-



      $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$



      Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$



      such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$



      So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$



      $= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$



      $= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$



      But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-



      $L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$



      $ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$



      This is still $frac{0}{0}$ form. So use L'Hopital's once more to get



      $ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$



      $ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$



      As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-



      $frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$



      $frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$



      $frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$



      $frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$



      and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,



      $L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$



      $= - [ b ( k b - c b ) + a ( c a - k a ) ]$



      Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$



      So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$



      $= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$



      $= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$



        Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$



        $= F ( k t ) - F ( c t )$



        So numerator becomes :-



        $int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$



        $= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$



        So we need to evaluate the limit :-



        $L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$



        This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-



        $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$



        Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$



        such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$



        So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$



        $= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$



        $= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$



        But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-



        $L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$



        $ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$



        This is still $frac{0}{0}$ form. So use L'Hopital's once more to get



        $ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$



        $ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$



        As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-



        $frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$



        $frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$



        $frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$



        $frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$



        and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,



        $L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$



        $= - [ b ( k b - c b ) + a ( c a - k a ) ]$



        Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$



        So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$



        $= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$



        $= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$






        share|cite|improve this answer









        $endgroup$



        Let $int e ^ { - s ^ { 2 } } d s = F ( s ) Rightarrow frac { d } { d s } ( F ( s ) ) = e ^ { - s ^ { 2 } }$



        Then $int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s = F left. ( s ) right| _ { c t } ^ { k t }$



        $= F ( k t ) - F ( c t )$



        So numerator becomes :-



        $int _ { a x } ^ { b x } left[ int _ { c t } ^ { k t } e ^ { - s ^ { 2 } } d s right] d t = int _ { a x } ^ { b x } [ F ( k t ) - F ( c t ) ] d t$



        $= int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t$



        So we need to evaluate the limit :-



        $L = lim _ { x rightarrow 0 } frac { int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t } { cos x - 1 }$



        This is a $frac{0}{0}$ form. So, we can use L'Hospital's rule as:-



        $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ int _ { a x } ^ { b x } F ( k t ) d t - int _ { a x } ^ { b x } F ( c t ) d t right] } { frac { d } { d x } ( cos x - 1 ) }$



        Now, let $int F ( k t ) d t = G ( t )$ and $int F ( c t ) d t = H ( t )$



        such that: $frac { d } { d t } ( G ( t ) ) = F ( k t ) $ and $ frac { d } { d t } ( H ( t ) ) = F ( c t )$



        So, $ L = lim _ { x rightarrow 0 } frac { frac { d } { d x } left[ G left. ( t ) right| _ { a x } ^ { b x } - H left. ( t ) right| _ { a x } ^ { b x } right] } { - sin x }$



        $= underset { x rightarrow 0 } { lim } frac{frac{d}{dx}[G(bx)-G(ax)-H(bx)+H(ax)]}{- sin x}$



        $= underset { x rightarrow 0 } { lim }frac{bcdot Gprime (bx)-acdot Gprime (ax)-bcdot Hprime (bx)+acdot Hprime (ax)}{- sin x}$



        But as $G ^ { prime } ( t ) = F ( k t )$ and $H ^ { prime } ( t ) = F ( c t ) , so$:-



        $L = lim _ { x rightarrow 0 } frac { b cdot F ( k x b ) - a cdot F ( k x a ) - b cdot F ( c b x ) + a cdot F ( c a x ) } { - sin x }$



        $ L = lim _ { x rightarrow 0 } frac { b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ] } { - sin x }$



        This is still $frac{0}{0}$ form. So use L'Hopital's once more to get



        $ L = lim _ { x rightarrow 0 } frac {frac{d}{dx}[ b [ F ( k x b ) - F ( c x b ) ] + a [ F ( c a x ) - F ( k x a ) ]] } { frac{d}{dx}(- sin x) }$



        $ L = lim _ { x rightarrow 0 } frac { b frac{d}{dx} [ F ( k x b ) - F ( c x b ) ] + a frac{d}{dx} [ F ( c a x ) - F ( k x a ) ] } { frac{d}{dx}(- cos x) }$



        As $ Fprime ( s ) = e ^ { - s ^ { 2 } }$ so :-



        $frac { d } { d x } ( F ( k x b ) ) = k b cdot F ^ { prime } ( kxb ) = k b e ^ { - ( k a b ) ^ { 2 } }$



        $frac { d } { d x } ( F ( c x b ) ) = c b cdot F ^ { prime } ( cxb ) = c b e ^ { - ( c x b ) ^ { 2 } }$



        $frac { d } { d x } ( F ( c x a ) ) = c a cdot F ^ { prime } ( cxa ) = c a e ^ { - ( c x a ) ^ { 2 } }$



        $frac { d } { d x } ( F ( k x a ) ) = k a cdot F ^ { prime } ( kxa ) = k a e ^ { - ( k x a ) ^ { 2 } }$



        and also, $lim _ { x rightarrow 0 } ( - cos x ) = - 1$ So,



        $L = lim _ { x rightarrow 0 } - [ b ( k b e ^ { - ( k x b ) ^ { 2 } } - c b e ^ { - (cxb)^{2}} + a ( c a e ^ { - (cax )^{2} } - k a e ^ { - ( k x a ) ^ { 2 } } )$



        $= - [ b ( k b - c b ) + a ( c a - k a ) ]$



        Because $lim _ { x rightarrow 0 } e ^ { - x ^ { 2 } } = e ^ { 0 } = 1$



        So, $L = - b k b + c b ^ { 2 } - c a ^ { 2 } + k a ^ { 2 }$



        $= b ^ { 2 } ( c - k ) + a ^ { 2 } ( k - c )$



        $= ( k - c ) left( a ^ { 2 } - b ^ { 2 } right)$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 31 at 15:39









        Tariro ManyikaTariro Manyika

        619




        619






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093240%2fif-a-b-c-k-%25e2%2588%2588-r-compute-the-following-limit%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter