$int_0^t e^{sA}cos(omega s)ds$ with $A$ matrix
$begingroup$
Let $A$ be a singular square matrix and $omega,tinmathbb{R}^{*+}$. How to compute the following integral?
$$I = int_0^t e^{sA}cos(omega s),mathrm{d}s$$
Since I am looking for a numerical solutions, I am open to approximations. For example,
$$ I = sum_{k=0}^infty int_0^t dfrac{(sA)^k}{k!} cos(omega s),mathrm{d}s = sum_{k=0}^infty dfrac{A^k}{k!}int_0^t s^k cos(omega s),mathrm{d}s$$
so I can truncate the above sum but I'm wondering if there is a more ingenious approach.
calculus integration matrix-equations matrix-exponential
$endgroup$
add a comment |
$begingroup$
Let $A$ be a singular square matrix and $omega,tinmathbb{R}^{*+}$. How to compute the following integral?
$$I = int_0^t e^{sA}cos(omega s),mathrm{d}s$$
Since I am looking for a numerical solutions, I am open to approximations. For example,
$$ I = sum_{k=0}^infty int_0^t dfrac{(sA)^k}{k!} cos(omega s),mathrm{d}s = sum_{k=0}^infty dfrac{A^k}{k!}int_0^t s^k cos(omega s),mathrm{d}s$$
so I can truncate the above sum but I'm wondering if there is a more ingenious approach.
calculus integration matrix-equations matrix-exponential
$endgroup$
$begingroup$
Complex-exponential form of $cos$?..
$endgroup$
– metamorphy
Jan 30 at 10:49
$begingroup$
@metamorphy I thought of it but I am stuck with $e^{sA}e^{iomega s}$ since it does not equal $e^{sA+iomega s}$.
$endgroup$
– anderstood
Jan 30 at 10:55
1
$begingroup$
Well, $e^X e^Y=e^{X+Y}$ for commuting matrices $X, Y$. So if your $omega$ is just a scalar, then $e^{sA} e^{iomega s}=e^{s(A+iomega I)}$.
$endgroup$
– metamorphy
Jan 30 at 11:02
add a comment |
$begingroup$
Let $A$ be a singular square matrix and $omega,tinmathbb{R}^{*+}$. How to compute the following integral?
$$I = int_0^t e^{sA}cos(omega s),mathrm{d}s$$
Since I am looking for a numerical solutions, I am open to approximations. For example,
$$ I = sum_{k=0}^infty int_0^t dfrac{(sA)^k}{k!} cos(omega s),mathrm{d}s = sum_{k=0}^infty dfrac{A^k}{k!}int_0^t s^k cos(omega s),mathrm{d}s$$
so I can truncate the above sum but I'm wondering if there is a more ingenious approach.
calculus integration matrix-equations matrix-exponential
$endgroup$
Let $A$ be a singular square matrix and $omega,tinmathbb{R}^{*+}$. How to compute the following integral?
$$I = int_0^t e^{sA}cos(omega s),mathrm{d}s$$
Since I am looking for a numerical solutions, I am open to approximations. For example,
$$ I = sum_{k=0}^infty int_0^t dfrac{(sA)^k}{k!} cos(omega s),mathrm{d}s = sum_{k=0}^infty dfrac{A^k}{k!}int_0^t s^k cos(omega s),mathrm{d}s$$
so I can truncate the above sum but I'm wondering if there is a more ingenious approach.
calculus integration matrix-equations matrix-exponential
calculus integration matrix-equations matrix-exponential
asked Jan 30 at 10:46
anderstoodanderstood
2,1791030
2,1791030
$begingroup$
Complex-exponential form of $cos$?..
$endgroup$
– metamorphy
Jan 30 at 10:49
$begingroup$
@metamorphy I thought of it but I am stuck with $e^{sA}e^{iomega s}$ since it does not equal $e^{sA+iomega s}$.
$endgroup$
– anderstood
Jan 30 at 10:55
1
$begingroup$
Well, $e^X e^Y=e^{X+Y}$ for commuting matrices $X, Y$. So if your $omega$ is just a scalar, then $e^{sA} e^{iomega s}=e^{s(A+iomega I)}$.
$endgroup$
– metamorphy
Jan 30 at 11:02
add a comment |
$begingroup$
Complex-exponential form of $cos$?..
$endgroup$
– metamorphy
Jan 30 at 10:49
$begingroup$
@metamorphy I thought of it but I am stuck with $e^{sA}e^{iomega s}$ since it does not equal $e^{sA+iomega s}$.
$endgroup$
– anderstood
Jan 30 at 10:55
1
$begingroup$
Well, $e^X e^Y=e^{X+Y}$ for commuting matrices $X, Y$. So if your $omega$ is just a scalar, then $e^{sA} e^{iomega s}=e^{s(A+iomega I)}$.
$endgroup$
– metamorphy
Jan 30 at 11:02
$begingroup$
Complex-exponential form of $cos$?..
$endgroup$
– metamorphy
Jan 30 at 10:49
$begingroup$
Complex-exponential form of $cos$?..
$endgroup$
– metamorphy
Jan 30 at 10:49
$begingroup$
@metamorphy I thought of it but I am stuck with $e^{sA}e^{iomega s}$ since it does not equal $e^{sA+iomega s}$.
$endgroup$
– anderstood
Jan 30 at 10:55
$begingroup$
@metamorphy I thought of it but I am stuck with $e^{sA}e^{iomega s}$ since it does not equal $e^{sA+iomega s}$.
$endgroup$
– anderstood
Jan 30 at 10:55
1
1
$begingroup$
Well, $e^X e^Y=e^{X+Y}$ for commuting matrices $X, Y$. So if your $omega$ is just a scalar, then $e^{sA} e^{iomega s}=e^{s(A+iomega I)}$.
$endgroup$
– metamorphy
Jan 30 at 11:02
$begingroup$
Well, $e^X e^Y=e^{X+Y}$ for commuting matrices $X, Y$. So if your $omega$ is just a scalar, then $e^{sA} e^{iomega s}=e^{s(A+iomega I)}$.
$endgroup$
– metamorphy
Jan 30 at 11:02
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As suggested by @metamorphy in the comments, it suffices to write
$$ I = operatorname{Re}left(int_0^t e^{s(A+iomega I_n)},mathrm{d}sright)$$
and the computation boils down to the integral of a matrix exponential as addressed in this post.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093371%2fint-0t-esa-cos-omega-sds-with-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As suggested by @metamorphy in the comments, it suffices to write
$$ I = operatorname{Re}left(int_0^t e^{s(A+iomega I_n)},mathrm{d}sright)$$
and the computation boils down to the integral of a matrix exponential as addressed in this post.
$endgroup$
add a comment |
$begingroup$
As suggested by @metamorphy in the comments, it suffices to write
$$ I = operatorname{Re}left(int_0^t e^{s(A+iomega I_n)},mathrm{d}sright)$$
and the computation boils down to the integral of a matrix exponential as addressed in this post.
$endgroup$
add a comment |
$begingroup$
As suggested by @metamorphy in the comments, it suffices to write
$$ I = operatorname{Re}left(int_0^t e^{s(A+iomega I_n)},mathrm{d}sright)$$
and the computation boils down to the integral of a matrix exponential as addressed in this post.
$endgroup$
As suggested by @metamorphy in the comments, it suffices to write
$$ I = operatorname{Re}left(int_0^t e^{s(A+iomega I_n)},mathrm{d}sright)$$
and the computation boils down to the integral of a matrix exponential as addressed in this post.
answered Jan 30 at 13:37
anderstoodanderstood
2,1791030
2,1791030
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093371%2fint-0t-esa-cos-omega-sds-with-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Complex-exponential form of $cos$?..
$endgroup$
– metamorphy
Jan 30 at 10:49
$begingroup$
@metamorphy I thought of it but I am stuck with $e^{sA}e^{iomega s}$ since it does not equal $e^{sA+iomega s}$.
$endgroup$
– anderstood
Jan 30 at 10:55
1
$begingroup$
Well, $e^X e^Y=e^{X+Y}$ for commuting matrices $X, Y$. So if your $omega$ is just a scalar, then $e^{sA} e^{iomega s}=e^{s(A+iomega I)}$.
$endgroup$
– metamorphy
Jan 30 at 11:02