Integrate $xe^{-bx/d}mathrm{erfc}(ax+c)$












0












$begingroup$


I want to calculate and evaluate the following integral:
$$frac{B}{2 D}int_{0}^{infty} xe^{frac{-Bx}{D}} erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})$$
My idea was to integrate by parts by setting: $$u= erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}}), du=-frac{1}{sqrt{Dt}} e^{-(frac{x+x_{0}-Bt}{2sqrt{Dt}})^2}$$
$$dv=xe^{-frac{Bx}{D}},v=e^{-frac{Bx}{D}}(frac{Bx}{D}x+1)*frac{D^2}{B^2}$$



I have calculated further and got some results, but I am not sure if my thinking is right, or even if there is some easier or more efficient way to do this analytically or numerically,(for example by expanding the error function as infinite series). Any tips would be appreciated.



And of course, erfc is the complementary error function with:
$$erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})=frac{2}{sqrt{pi}}int_{frac{x+x_{0}-Bt}{2sqrt{Dt}}}^{infty} e^{-z^2} dz $$










share|cite|improve this question











$endgroup$












  • $begingroup$
    CAS like Mathematica can handle this integral.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 29 at 18:12
















0












$begingroup$


I want to calculate and evaluate the following integral:
$$frac{B}{2 D}int_{0}^{infty} xe^{frac{-Bx}{D}} erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})$$
My idea was to integrate by parts by setting: $$u= erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}}), du=-frac{1}{sqrt{Dt}} e^{-(frac{x+x_{0}-Bt}{2sqrt{Dt}})^2}$$
$$dv=xe^{-frac{Bx}{D}},v=e^{-frac{Bx}{D}}(frac{Bx}{D}x+1)*frac{D^2}{B^2}$$



I have calculated further and got some results, but I am not sure if my thinking is right, or even if there is some easier or more efficient way to do this analytically or numerically,(for example by expanding the error function as infinite series). Any tips would be appreciated.



And of course, erfc is the complementary error function with:
$$erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})=frac{2}{sqrt{pi}}int_{frac{x+x_{0}-Bt}{2sqrt{Dt}}}^{infty} e^{-z^2} dz $$










share|cite|improve this question











$endgroup$












  • $begingroup$
    CAS like Mathematica can handle this integral.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 29 at 18:12














0












0








0





$begingroup$


I want to calculate and evaluate the following integral:
$$frac{B}{2 D}int_{0}^{infty} xe^{frac{-Bx}{D}} erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})$$
My idea was to integrate by parts by setting: $$u= erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}}), du=-frac{1}{sqrt{Dt}} e^{-(frac{x+x_{0}-Bt}{2sqrt{Dt}})^2}$$
$$dv=xe^{-frac{Bx}{D}},v=e^{-frac{Bx}{D}}(frac{Bx}{D}x+1)*frac{D^2}{B^2}$$



I have calculated further and got some results, but I am not sure if my thinking is right, or even if there is some easier or more efficient way to do this analytically or numerically,(for example by expanding the error function as infinite series). Any tips would be appreciated.



And of course, erfc is the complementary error function with:
$$erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})=frac{2}{sqrt{pi}}int_{frac{x+x_{0}-Bt}{2sqrt{Dt}}}^{infty} e^{-z^2} dz $$










share|cite|improve this question











$endgroup$




I want to calculate and evaluate the following integral:
$$frac{B}{2 D}int_{0}^{infty} xe^{frac{-Bx}{D}} erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})$$
My idea was to integrate by parts by setting: $$u= erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}}), du=-frac{1}{sqrt{Dt}} e^{-(frac{x+x_{0}-Bt}{2sqrt{Dt}})^2}$$
$$dv=xe^{-frac{Bx}{D}},v=e^{-frac{Bx}{D}}(frac{Bx}{D}x+1)*frac{D^2}{B^2}$$



I have calculated further and got some results, but I am not sure if my thinking is right, or even if there is some easier or more efficient way to do this analytically or numerically,(for example by expanding the error function as infinite series). Any tips would be appreciated.



And of course, erfc is the complementary error function with:
$$erfc(frac{x+x_{0}-Bt}{2sqrt{Dt}})=frac{2}{sqrt{pi}}int_{frac{x+x_{0}-Bt}{2sqrt{Dt}}}^{infty} e^{-z^2} dz $$







real-analysis calculus integration numerical-methods special-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 16:05









ablmf

2,58552452




2,58552452










asked Jan 29 at 16:03









George FarahGeorge Farah

65




65












  • $begingroup$
    CAS like Mathematica can handle this integral.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 29 at 18:12


















  • $begingroup$
    CAS like Mathematica can handle this integral.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 29 at 18:12
















$begingroup$
CAS like Mathematica can handle this integral.
$endgroup$
– Mariusz Iwaniuk
Jan 29 at 18:12




$begingroup$
CAS like Mathematica can handle this integral.
$endgroup$
– Mariusz Iwaniuk
Jan 29 at 18:12










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092347%2fintegrate-xe-bx-d-mathrmerfcaxc%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092347%2fintegrate-xe-bx-d-mathrmerfcaxc%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith