Is $K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins}$ a summability kernel for $tto...
$begingroup$
In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
$$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
$$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
$$partial_t u_f = partial_{xx}u_f.$$
So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:
Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?
I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
I tried with Poisson summation formula obtaining only a messier expression. Any ideas?
fourier-series holder-spaces
$endgroup$
add a comment |
$begingroup$
In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
$$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
$$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
$$partial_t u_f = partial_{xx}u_f.$$
So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:
Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?
I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
I tried with Poisson summation formula obtaining only a messier expression. Any ideas?
fourier-series holder-spaces
$endgroup$
add a comment |
$begingroup$
In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
$$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
$$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
$$partial_t u_f = partial_{xx}u_f.$$
So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:
Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?
I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
I tried with Poisson summation formula obtaining only a messier expression. Any ideas?
fourier-series holder-spaces
$endgroup$
In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
$$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
$$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
$$partial_t u_f = partial_{xx}u_f.$$
So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:
Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?
I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
I tried with Poisson summation formula obtaining only a messier expression. Any ideas?
fourier-series holder-spaces
fourier-series holder-spaces
edited Feb 7 at 12:02
Bob
asked Jan 30 at 16:09


BobBob
1,7001725
1,7001725
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By Poisson summation formula, we have
$$
frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
$$ Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
$$begin{eqnarray}
(K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
end{eqnarray}$$ Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
$$begin{eqnarray}
|K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
end{eqnarray}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093721%2fis-k-t-mathbbt-to-mathbbc-s-mapsto-sum-n%25e2%2588%2588-mathbbze-n2-teins%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Poisson summation formula, we have
$$
frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
$$ Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
$$begin{eqnarray}
(K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
end{eqnarray}$$ Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
$$begin{eqnarray}
|K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
By Poisson summation formula, we have
$$
frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
$$ Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
$$begin{eqnarray}
(K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
end{eqnarray}$$ Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
$$begin{eqnarray}
|K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
By Poisson summation formula, we have
$$
frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
$$ Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
$$begin{eqnarray}
(K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
end{eqnarray}$$ Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
$$begin{eqnarray}
|K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
end{eqnarray}$$
$endgroup$
By Poisson summation formula, we have
$$
frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
$$ Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
$$begin{eqnarray}
(K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
end{eqnarray}$$ Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
$$begin{eqnarray}
|K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
end{eqnarray}$$
edited Jan 30 at 17:46
answered Jan 30 at 17:41


SongSong
18.5k21651
18.5k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093721%2fis-k-t-mathbbt-to-mathbbc-s-mapsto-sum-n%25e2%2588%2588-mathbbze-n2-teins%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown