Is $K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins}$ a summability kernel for $tto...












0












$begingroup$


In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
$$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
$$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
$$partial_t u_f = partial_{xx}u_f.$$
So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:




Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?




I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
I tried with Poisson summation formula obtaining only a messier expression. Any ideas?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
    $$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
    i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
    It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
    $$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
    is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
    $$partial_t u_f = partial_{xx}u_f.$$
    So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:




    Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?




    I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
    I tried with Poisson summation formula obtaining only a messier expression. Any ideas?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
      $$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
      i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
      It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
      $$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
      is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
      $$partial_t u_f = partial_{xx}u_f.$$
      So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:




      Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?




      I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
      I tried with Poisson summation formula obtaining only a messier expression. Any ideas?










      share|cite|improve this question











      $endgroup$




      In trying to solve with Fourier series the heat equation on the 1-torus, I stumbled into this family of functions:
      $$forall t>0, K_t :mathbb{T}tomathbb{C}, smapstosum_{n∈mathbb{Z}}e^{-n^2 t}e^{ins},$$
      i.e. a family of functions indexed by $tin(0,+infty)$ where the $t$-member is a function with Fourier coefficients given by $(e^{-n^2 t})_{ninmathbb{Z}}$.
      It is clear that $forall t>0, K_tin C^infty(mathbb{T})$ and so, if $f$ is a distribution on $mathbb{T}$, the distribution $K_t*f$ is actually represented by an element of $C^infty(mathbb{T})$. Also, I've proved that the function:
      $$u_f :mathbb{T}times(0,+infty)tomathbb{C}, (x,t)mapsto (K_t*f)(x)$$
      is an element of $C^infty(mathbb{Ttimes(0,+infty)})$ and that:
      $$partial_t u_f = partial_{xx}u_f.$$
      So, I really want the family $(K_t)_{t>0}$ to be a summability kernel for $tto0^+$, because in this case $u_f$ would be a solution for the heat equation on the 1-torus with initial temperature $fin L^p(mathbb{T})$ with $1le p<infty$, in the sense that $$|u_f(cdot,t)-f|_p, tto 0^+.$$ So:




      Is $(K_t)_{t>0}$ a summability kernel for $tto0^+$?




      I noticed that the coefficients $e^{-t n^2}to 1, tto 0^+$ boundedly (by $1$), so $K_ttodelta_0, tto 0^+$ in distribution, and then at least there's some hope.
      I tried with Poisson summation formula obtaining only a messier expression. Any ideas?







      fourier-series holder-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 7 at 12:02







      Bob

















      asked Jan 30 at 16:09









      BobBob

      1,7001725




      1,7001725






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          By Poisson summation formula, we have
          $$
          frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
          $$
          Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
          $$begin{eqnarray}
          (K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
          &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
          &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
          frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
          end{eqnarray}$$
          Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
          $$begin{eqnarray}
          |K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
          end{eqnarray}$$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093721%2fis-k-t-mathbbt-to-mathbbc-s-mapsto-sum-n%25e2%2588%2588-mathbbze-n2-teins%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            By Poisson summation formula, we have
            $$
            frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
            $$
            Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
            $$begin{eqnarray}
            (K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
            &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
            &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
            frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
            end{eqnarray}$$
            Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
            $$begin{eqnarray}
            |K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              By Poisson summation formula, we have
              $$
              frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
              $$
              Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
              $$begin{eqnarray}
              (K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
              &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
              &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
              frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
              end{eqnarray}$$
              Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
              $$begin{eqnarray}
              |K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
              end{eqnarray}$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                By Poisson summation formula, we have
                $$
                frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
                $$
                Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
                $$begin{eqnarray}
                (K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
                &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
                &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
                frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
                end{eqnarray}$$
                Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
                $$begin{eqnarray}
                |K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
                end{eqnarray}$$






                share|cite|improve this answer











                $endgroup$



                By Poisson summation formula, we have
                $$
                frac1 {2pi}K_t(s)=frac{1}{2pi}sum_{nin Bbb Z} e^{-n^2 t}e^{ins} = frac 1 {2sqrt {pi t}}sum_{jinBbb Z}e^{-frac {(s-2pi j)^2}{4t}}.
                $$
                Extend $f$ $2pi$-periodically to $Bbb R$. We obtain for $xinBbb T=[-pi,pi]$
                $$begin{eqnarray}
                (K_t*f)(x) &=&frac1{2pi}int_{-pi}^pi K_t(s)f(x-s)mathrm{d}s\
                &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi}^pi e^{-frac {(s-2pi j)^2}{4t}}f(x-s)mathrm ds\&=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s-2jpi)mathrm ds\
                &=&frac 1 {2sqrt {pi t}}sum_{jinBbb Z}int_{-pi-2jpi}^{pi-2jpi} e^{-frac {s^2}{4t}}f(x-s)mathrm ds\&=&
                frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}f(x-s)mathrm ds.
                end{eqnarray}$$
                Note that the heat kernel $p_t(x) = frac 1 {2sqrt {pi t}} e^{-frac {x^2}{4t}}$ is a summability kernel as $trightarrow 0^+$. It follows
                $$begin{eqnarray}
                |K_t*f -f|_{L^p(Bbb T)}&le& frac 1 {2sqrt {pi t}}int_{-infty}^{infty} e^{-frac {s^2}{4t}}|f(cdot-s)-f(cdot)|_{L^p(Bbb T)}mathrm ds\&=& int_{-infty}^{infty} p_t(s)|tau_s f-f|_{L^p(Bbb T)}mathrm d sxrightarrow{tto 0^+} 0.
                end{eqnarray}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 30 at 17:46

























                answered Jan 30 at 17:41









                SongSong

                18.5k21651




                18.5k21651






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093721%2fis-k-t-mathbbt-to-mathbbc-s-mapsto-sum-n%25e2%2588%2588-mathbbze-n2-teins%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith