Limit of $ sum_{n=0}^{+infty} frac{(-x)^n}{1+n!} $ as $xrightarrow +infty$.
$begingroup$
The series of functions
$$
sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}
$$
is pointwise convergent for any $xin mathbb{R}$, thus it defines the function $f:mathbb{R}rightarrow mathbb{R}$ given by $f(x) = sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$. Is there a way to evaluate the limit $lim_{xrightarrow +infty} f(x)$?
real-analysis calculus limits power-series
$endgroup$
add a comment |
$begingroup$
The series of functions
$$
sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}
$$
is pointwise convergent for any $xin mathbb{R}$, thus it defines the function $f:mathbb{R}rightarrow mathbb{R}$ given by $f(x) = sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$. Is there a way to evaluate the limit $lim_{xrightarrow +infty} f(x)$?
real-analysis calculus limits power-series
$endgroup$
$begingroup$
Do you mean, $f(x)=sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$?
$endgroup$
– Math Lover
Jan 29 at 15:02
add a comment |
$begingroup$
The series of functions
$$
sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}
$$
is pointwise convergent for any $xin mathbb{R}$, thus it defines the function $f:mathbb{R}rightarrow mathbb{R}$ given by $f(x) = sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$. Is there a way to evaluate the limit $lim_{xrightarrow +infty} f(x)$?
real-analysis calculus limits power-series
$endgroup$
The series of functions
$$
sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}
$$
is pointwise convergent for any $xin mathbb{R}$, thus it defines the function $f:mathbb{R}rightarrow mathbb{R}$ given by $f(x) = sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$. Is there a way to evaluate the limit $lim_{xrightarrow +infty} f(x)$?
real-analysis calculus limits power-series
real-analysis calculus limits power-series
edited Feb 8 at 18:03
AlessioDV
asked Jan 29 at 14:36
AlessioDVAlessioDV
1,158114
1,158114
$begingroup$
Do you mean, $f(x)=sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$?
$endgroup$
– Math Lover
Jan 29 at 15:02
add a comment |
$begingroup$
Do you mean, $f(x)=sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$?
$endgroup$
– Math Lover
Jan 29 at 15:02
$begingroup$
Do you mean, $f(x)=sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$?
$endgroup$
– Math Lover
Jan 29 at 15:02
$begingroup$
Do you mean, $f(x)=sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$?
$endgroup$
– Math Lover
Jan 29 at 15:02
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Write
$$
f(z) = sum_{n=0}^infty frac{z^n}{1+n!}
$$
of course an entire function. We want to know about $lim_{z to -infty} f(z)$. Maple produced this graph numerically.

So I guess that $lim_{z to -infty} f(z) = +infty$.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092253%2flimit-of-sum-n-0-infty-frac-xn1n-as-x-rightarrow-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write
$$
f(z) = sum_{n=0}^infty frac{z^n}{1+n!}
$$
of course an entire function. We want to know about $lim_{z to -infty} f(z)$. Maple produced this graph numerically.

So I guess that $lim_{z to -infty} f(z) = +infty$.
$endgroup$
add a comment |
$begingroup$
Write
$$
f(z) = sum_{n=0}^infty frac{z^n}{1+n!}
$$
of course an entire function. We want to know about $lim_{z to -infty} f(z)$. Maple produced this graph numerically.

So I guess that $lim_{z to -infty} f(z) = +infty$.
$endgroup$
add a comment |
$begingroup$
Write
$$
f(z) = sum_{n=0}^infty frac{z^n}{1+n!}
$$
of course an entire function. We want to know about $lim_{z to -infty} f(z)$. Maple produced this graph numerically.

So I guess that $lim_{z to -infty} f(z) = +infty$.
$endgroup$
Write
$$
f(z) = sum_{n=0}^infty frac{z^n}{1+n!}
$$
of course an entire function. We want to know about $lim_{z to -infty} f(z)$. Maple produced this graph numerically.

So I guess that $lim_{z to -infty} f(z) = +infty$.
answered Feb 8 at 22:34
GEdgarGEdgar
63.3k268172
63.3k268172
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092253%2flimit-of-sum-n-0-infty-frac-xn1n-as-x-rightarrow-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown


$begingroup$
Do you mean, $f(x)=sum_{n=0}^{+infty} frac{(-x)^n}{1+n!}$?
$endgroup$
– Math Lover
Jan 29 at 15:02