Minimum and maximum determinant of a sudoku-matrix












15












$begingroup$


Let $A$ be a sudoku-matrix. Assume that its determinant is positive. What is the lowest,
what the highest possible value for the determinant of $A$ ?
$A$ must have the dominant eigenvalue $45$, but this does not seem to help establishing
bounds.



My records so far :



$$pmatrix{7&2&9&6&4&3&5&1&8 \ 5&6&8&9&1&2&7&4&3 \ 1&3&4&8&5&7&9&6&2 \ 2&8&7&4&6&1&3&9&5 \ 9&5&1&7&3&8&6&2&4 \ 3&4&6&2&9&5&8&7&1 \ 4&9&3&5&2&6&1&8&7 \ 8&1&2&3&7&9&4&5&6 \ 6&7&5&1&8&4&2&3&9}$$



leads to a sudoku-matrix with determinant $1215$.
$$pmatrix{4&3&1&9&7&5&2&6&8 \ 6&7&2&3&8&1&9&5&4 \ 8&9&5&6&4&2&7&1&3 \ 5&4&9&1&6&8&3&2&7 \ 7&1&3&4&2&9&6&8&5 \ 2&8&6&5&3&7&4&9&1 \ 1&5&4&7&9&6&8&3&2 \ 9&2&7&8&5&3&1&4&6 \ 3&6&8&2&1&4&5&7&9 }$$



leads to a sudoku-matrix with determinant $238 615 470$.



Additional question :



Can a sudoku-matrix have multiple eigenvalues and, even more interesting,
be not diagonalizable or have a minimal polynomial different from the
characteristic polynomial ?



I also found a singular sudoku matrix :



$$pmatrix{6&5&3&9&4&7&8&1&2 \ 9&8&7&1&6&2&4&3&5 \ 4&2&1&3&5&8&6&7&9 \ 5&3&8&4&2&6&1&9&7 \ 2&7&4&5&9&1&3&8&6 \ 1&9&6&7&8&3&2&5&4 \ 8&6&5&2&1&9&7&4&3 \ 3&1&9&6&7&4&5&2&8 \ 7&4&2&8&3&5&9&6&1}$$



I found out that the determinant must be a multiple of $405$, so $405$ is a lower
bound.
I found a sudoku-matrix with determinant $405$ , so it remains to find the maximum.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hah, interesting question :) Any observations on the eigenvalues yet?
    $endgroup$
    – rschwieb
    Jul 22 '14 at 16:42










  • $begingroup$
    So far, I concentrated on the determinant. This is difficult enough.
    $endgroup$
    – Peter
    Jul 22 '14 at 16:44






  • 3




    $begingroup$
    P.Newton and S.DeSalvo, in their paper The Shannon entropy of sudoku matrices (in Figure 2), have found sudoku-matrices with determinant up to 551 886 210 (in absolute value).
    $endgroup$
    – Pierre-Guy Plamondon
    Jul 23 '14 at 15:36








  • 2




    $begingroup$
    $pmatrix {9&8&3&4&5&2&7&1&6\4&5&2&7&1&6&9&8&3\7&1&6&9&8&3&4&5&2\8&3&4&5&2&7&1&6&9\5&2&7&1&6&9&8&3&4\1&6&9&8&3&4&5&2&7\3&4&5&2&7&1&6&9&8\2&7&1&6&9&8&3&4&5\6&9&8&3&4&5&2&7&1}$ has determinant $-929 587 995$!!
    $endgroup$
    – Peter
    Aug 2 '14 at 12:56








  • 1




    $begingroup$
    This question is closely related to maximum determinant of a latin square. If my conjecture mentioned there is true, the given sudoku is best possible.
    $endgroup$
    – Peter
    Aug 2 '14 at 13:02
















15












$begingroup$


Let $A$ be a sudoku-matrix. Assume that its determinant is positive. What is the lowest,
what the highest possible value for the determinant of $A$ ?
$A$ must have the dominant eigenvalue $45$, but this does not seem to help establishing
bounds.



My records so far :



$$pmatrix{7&2&9&6&4&3&5&1&8 \ 5&6&8&9&1&2&7&4&3 \ 1&3&4&8&5&7&9&6&2 \ 2&8&7&4&6&1&3&9&5 \ 9&5&1&7&3&8&6&2&4 \ 3&4&6&2&9&5&8&7&1 \ 4&9&3&5&2&6&1&8&7 \ 8&1&2&3&7&9&4&5&6 \ 6&7&5&1&8&4&2&3&9}$$



leads to a sudoku-matrix with determinant $1215$.
$$pmatrix{4&3&1&9&7&5&2&6&8 \ 6&7&2&3&8&1&9&5&4 \ 8&9&5&6&4&2&7&1&3 \ 5&4&9&1&6&8&3&2&7 \ 7&1&3&4&2&9&6&8&5 \ 2&8&6&5&3&7&4&9&1 \ 1&5&4&7&9&6&8&3&2 \ 9&2&7&8&5&3&1&4&6 \ 3&6&8&2&1&4&5&7&9 }$$



leads to a sudoku-matrix with determinant $238 615 470$.



Additional question :



Can a sudoku-matrix have multiple eigenvalues and, even more interesting,
be not diagonalizable or have a minimal polynomial different from the
characteristic polynomial ?



I also found a singular sudoku matrix :



$$pmatrix{6&5&3&9&4&7&8&1&2 \ 9&8&7&1&6&2&4&3&5 \ 4&2&1&3&5&8&6&7&9 \ 5&3&8&4&2&6&1&9&7 \ 2&7&4&5&9&1&3&8&6 \ 1&9&6&7&8&3&2&5&4 \ 8&6&5&2&1&9&7&4&3 \ 3&1&9&6&7&4&5&2&8 \ 7&4&2&8&3&5&9&6&1}$$



I found out that the determinant must be a multiple of $405$, so $405$ is a lower
bound.
I found a sudoku-matrix with determinant $405$ , so it remains to find the maximum.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hah, interesting question :) Any observations on the eigenvalues yet?
    $endgroup$
    – rschwieb
    Jul 22 '14 at 16:42










  • $begingroup$
    So far, I concentrated on the determinant. This is difficult enough.
    $endgroup$
    – Peter
    Jul 22 '14 at 16:44






  • 3




    $begingroup$
    P.Newton and S.DeSalvo, in their paper The Shannon entropy of sudoku matrices (in Figure 2), have found sudoku-matrices with determinant up to 551 886 210 (in absolute value).
    $endgroup$
    – Pierre-Guy Plamondon
    Jul 23 '14 at 15:36








  • 2




    $begingroup$
    $pmatrix {9&8&3&4&5&2&7&1&6\4&5&2&7&1&6&9&8&3\7&1&6&9&8&3&4&5&2\8&3&4&5&2&7&1&6&9\5&2&7&1&6&9&8&3&4\1&6&9&8&3&4&5&2&7\3&4&5&2&7&1&6&9&8\2&7&1&6&9&8&3&4&5\6&9&8&3&4&5&2&7&1}$ has determinant $-929 587 995$!!
    $endgroup$
    – Peter
    Aug 2 '14 at 12:56








  • 1




    $begingroup$
    This question is closely related to maximum determinant of a latin square. If my conjecture mentioned there is true, the given sudoku is best possible.
    $endgroup$
    – Peter
    Aug 2 '14 at 13:02














15












15








15


5



$begingroup$


Let $A$ be a sudoku-matrix. Assume that its determinant is positive. What is the lowest,
what the highest possible value for the determinant of $A$ ?
$A$ must have the dominant eigenvalue $45$, but this does not seem to help establishing
bounds.



My records so far :



$$pmatrix{7&2&9&6&4&3&5&1&8 \ 5&6&8&9&1&2&7&4&3 \ 1&3&4&8&5&7&9&6&2 \ 2&8&7&4&6&1&3&9&5 \ 9&5&1&7&3&8&6&2&4 \ 3&4&6&2&9&5&8&7&1 \ 4&9&3&5&2&6&1&8&7 \ 8&1&2&3&7&9&4&5&6 \ 6&7&5&1&8&4&2&3&9}$$



leads to a sudoku-matrix with determinant $1215$.
$$pmatrix{4&3&1&9&7&5&2&6&8 \ 6&7&2&3&8&1&9&5&4 \ 8&9&5&6&4&2&7&1&3 \ 5&4&9&1&6&8&3&2&7 \ 7&1&3&4&2&9&6&8&5 \ 2&8&6&5&3&7&4&9&1 \ 1&5&4&7&9&6&8&3&2 \ 9&2&7&8&5&3&1&4&6 \ 3&6&8&2&1&4&5&7&9 }$$



leads to a sudoku-matrix with determinant $238 615 470$.



Additional question :



Can a sudoku-matrix have multiple eigenvalues and, even more interesting,
be not diagonalizable or have a minimal polynomial different from the
characteristic polynomial ?



I also found a singular sudoku matrix :



$$pmatrix{6&5&3&9&4&7&8&1&2 \ 9&8&7&1&6&2&4&3&5 \ 4&2&1&3&5&8&6&7&9 \ 5&3&8&4&2&6&1&9&7 \ 2&7&4&5&9&1&3&8&6 \ 1&9&6&7&8&3&2&5&4 \ 8&6&5&2&1&9&7&4&3 \ 3&1&9&6&7&4&5&2&8 \ 7&4&2&8&3&5&9&6&1}$$



I found out that the determinant must be a multiple of $405$, so $405$ is a lower
bound.
I found a sudoku-matrix with determinant $405$ , so it remains to find the maximum.










share|cite|improve this question











$endgroup$




Let $A$ be a sudoku-matrix. Assume that its determinant is positive. What is the lowest,
what the highest possible value for the determinant of $A$ ?
$A$ must have the dominant eigenvalue $45$, but this does not seem to help establishing
bounds.



My records so far :



$$pmatrix{7&2&9&6&4&3&5&1&8 \ 5&6&8&9&1&2&7&4&3 \ 1&3&4&8&5&7&9&6&2 \ 2&8&7&4&6&1&3&9&5 \ 9&5&1&7&3&8&6&2&4 \ 3&4&6&2&9&5&8&7&1 \ 4&9&3&5&2&6&1&8&7 \ 8&1&2&3&7&9&4&5&6 \ 6&7&5&1&8&4&2&3&9}$$



leads to a sudoku-matrix with determinant $1215$.
$$pmatrix{4&3&1&9&7&5&2&6&8 \ 6&7&2&3&8&1&9&5&4 \ 8&9&5&6&4&2&7&1&3 \ 5&4&9&1&6&8&3&2&7 \ 7&1&3&4&2&9&6&8&5 \ 2&8&6&5&3&7&4&9&1 \ 1&5&4&7&9&6&8&3&2 \ 9&2&7&8&5&3&1&4&6 \ 3&6&8&2&1&4&5&7&9 }$$



leads to a sudoku-matrix with determinant $238 615 470$.



Additional question :



Can a sudoku-matrix have multiple eigenvalues and, even more interesting,
be not diagonalizable or have a minimal polynomial different from the
characteristic polynomial ?



I also found a singular sudoku matrix :



$$pmatrix{6&5&3&9&4&7&8&1&2 \ 9&8&7&1&6&2&4&3&5 \ 4&2&1&3&5&8&6&7&9 \ 5&3&8&4&2&6&1&9&7 \ 2&7&4&5&9&1&3&8&6 \ 1&9&6&7&8&3&2&5&4 \ 8&6&5&2&1&9&7&4&3 \ 3&1&9&6&7&4&5&2&8 \ 7&4&2&8&3&5&9&6&1}$$



I found out that the determinant must be a multiple of $405$, so $405$ is a lower
bound.
I found a sudoku-matrix with determinant $405$ , so it remains to find the maximum.







matrices eigenvalues-eigenvectors determinant recreational-mathematics sudoku






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Oct 12 '16 at 9:41









Rodrigo de Azevedo

13.1k41960




13.1k41960










asked Jul 21 '14 at 14:45









PeterPeter

48.9k1240137




48.9k1240137












  • $begingroup$
    Hah, interesting question :) Any observations on the eigenvalues yet?
    $endgroup$
    – rschwieb
    Jul 22 '14 at 16:42










  • $begingroup$
    So far, I concentrated on the determinant. This is difficult enough.
    $endgroup$
    – Peter
    Jul 22 '14 at 16:44






  • 3




    $begingroup$
    P.Newton and S.DeSalvo, in their paper The Shannon entropy of sudoku matrices (in Figure 2), have found sudoku-matrices with determinant up to 551 886 210 (in absolute value).
    $endgroup$
    – Pierre-Guy Plamondon
    Jul 23 '14 at 15:36








  • 2




    $begingroup$
    $pmatrix {9&8&3&4&5&2&7&1&6\4&5&2&7&1&6&9&8&3\7&1&6&9&8&3&4&5&2\8&3&4&5&2&7&1&6&9\5&2&7&1&6&9&8&3&4\1&6&9&8&3&4&5&2&7\3&4&5&2&7&1&6&9&8\2&7&1&6&9&8&3&4&5\6&9&8&3&4&5&2&7&1}$ has determinant $-929 587 995$!!
    $endgroup$
    – Peter
    Aug 2 '14 at 12:56








  • 1




    $begingroup$
    This question is closely related to maximum determinant of a latin square. If my conjecture mentioned there is true, the given sudoku is best possible.
    $endgroup$
    – Peter
    Aug 2 '14 at 13:02


















  • $begingroup$
    Hah, interesting question :) Any observations on the eigenvalues yet?
    $endgroup$
    – rschwieb
    Jul 22 '14 at 16:42










  • $begingroup$
    So far, I concentrated on the determinant. This is difficult enough.
    $endgroup$
    – Peter
    Jul 22 '14 at 16:44






  • 3




    $begingroup$
    P.Newton and S.DeSalvo, in their paper The Shannon entropy of sudoku matrices (in Figure 2), have found sudoku-matrices with determinant up to 551 886 210 (in absolute value).
    $endgroup$
    – Pierre-Guy Plamondon
    Jul 23 '14 at 15:36








  • 2




    $begingroup$
    $pmatrix {9&8&3&4&5&2&7&1&6\4&5&2&7&1&6&9&8&3\7&1&6&9&8&3&4&5&2\8&3&4&5&2&7&1&6&9\5&2&7&1&6&9&8&3&4\1&6&9&8&3&4&5&2&7\3&4&5&2&7&1&6&9&8\2&7&1&6&9&8&3&4&5\6&9&8&3&4&5&2&7&1}$ has determinant $-929 587 995$!!
    $endgroup$
    – Peter
    Aug 2 '14 at 12:56








  • 1




    $begingroup$
    This question is closely related to maximum determinant of a latin square. If my conjecture mentioned there is true, the given sudoku is best possible.
    $endgroup$
    – Peter
    Aug 2 '14 at 13:02
















$begingroup$
Hah, interesting question :) Any observations on the eigenvalues yet?
$endgroup$
– rschwieb
Jul 22 '14 at 16:42




$begingroup$
Hah, interesting question :) Any observations on the eigenvalues yet?
$endgroup$
– rschwieb
Jul 22 '14 at 16:42












$begingroup$
So far, I concentrated on the determinant. This is difficult enough.
$endgroup$
– Peter
Jul 22 '14 at 16:44




$begingroup$
So far, I concentrated on the determinant. This is difficult enough.
$endgroup$
– Peter
Jul 22 '14 at 16:44




3




3




$begingroup$
P.Newton and S.DeSalvo, in their paper The Shannon entropy of sudoku matrices (in Figure 2), have found sudoku-matrices with determinant up to 551 886 210 (in absolute value).
$endgroup$
– Pierre-Guy Plamondon
Jul 23 '14 at 15:36






$begingroup$
P.Newton and S.DeSalvo, in their paper The Shannon entropy of sudoku matrices (in Figure 2), have found sudoku-matrices with determinant up to 551 886 210 (in absolute value).
$endgroup$
– Pierre-Guy Plamondon
Jul 23 '14 at 15:36






2




2




$begingroup$
$pmatrix {9&8&3&4&5&2&7&1&6\4&5&2&7&1&6&9&8&3\7&1&6&9&8&3&4&5&2\8&3&4&5&2&7&1&6&9\5&2&7&1&6&9&8&3&4\1&6&9&8&3&4&5&2&7\3&4&5&2&7&1&6&9&8\2&7&1&6&9&8&3&4&5\6&9&8&3&4&5&2&7&1}$ has determinant $-929 587 995$!!
$endgroup$
– Peter
Aug 2 '14 at 12:56






$begingroup$
$pmatrix {9&8&3&4&5&2&7&1&6\4&5&2&7&1&6&9&8&3\7&1&6&9&8&3&4&5&2\8&3&4&5&2&7&1&6&9\5&2&7&1&6&9&8&3&4\1&6&9&8&3&4&5&2&7\3&4&5&2&7&1&6&9&8\2&7&1&6&9&8&3&4&5\6&9&8&3&4&5&2&7&1}$ has determinant $-929 587 995$!!
$endgroup$
– Peter
Aug 2 '14 at 12:56






1




1




$begingroup$
This question is closely related to maximum determinant of a latin square. If my conjecture mentioned there is true, the given sudoku is best possible.
$endgroup$
– Peter
Aug 2 '14 at 13:02




$begingroup$
This question is closely related to maximum determinant of a latin square. If my conjecture mentioned there is true, the given sudoku is best possible.
$endgroup$
– Peter
Aug 2 '14 at 13:02










1 Answer
1






active

oldest

votes


















2












$begingroup$

I found 6 non equivalent sudoku-matrix with a determinant equal to $929,587,995$.

Here they are in lexicographic form :



124359678539687241867214395248931756391765482675428913486192537753846129912573864
124389567398675214657142938271934856586217493943568721419853672762491385835726149
127345689534698217869271354245983761398716425671452938483169572752834196916527843
128379456397645821654182793273964185581237649946518372415823967769451238832796514
134278569569341827827695134298456371371982645645713298416837952783529416952164783
136259478529847631748631259295784163361925847487163925613592784874316592952478316 `


The sudoku-matrix given in Peter's note is equivalent to line 3.
Here is the second line as example:

$$
pmatrix {1&2&4&3&8&9&5&6&7\3&9&8&6&7&5&2&1&4\6&5&7&1&4&2&9&3&8\2&7&1&9&3&4&8&5&6\5&8&6&2&1&7&4&9&3\9&4&3&5&6&8&7&2&1\4&1&9&8&5&3&6&7&2\7&6&2&4&9&1&3&8&5\8&3&5&7&2&6&1&4&9}
$$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f873709%2fminimum-and-maximum-determinant-of-a-sudoku-matrix%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I found 6 non equivalent sudoku-matrix with a determinant equal to $929,587,995$.

    Here they are in lexicographic form :



    124359678539687241867214395248931756391765482675428913486192537753846129912573864
    124389567398675214657142938271934856586217493943568721419853672762491385835726149
    127345689534698217869271354245983761398716425671452938483169572752834196916527843
    128379456397645821654182793273964185581237649946518372415823967769451238832796514
    134278569569341827827695134298456371371982645645713298416837952783529416952164783
    136259478529847631748631259295784163361925847487163925613592784874316592952478316 `


    The sudoku-matrix given in Peter's note is equivalent to line 3.
    Here is the second line as example:

    $$
    pmatrix {1&2&4&3&8&9&5&6&7\3&9&8&6&7&5&2&1&4\6&5&7&1&4&2&9&3&8\2&7&1&9&3&4&8&5&6\5&8&6&2&1&7&4&9&3\9&4&3&5&6&8&7&2&1\4&1&9&8&5&3&6&7&2\7&6&2&4&9&1&3&8&5\8&3&5&7&2&6&1&4&9}
    $$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      I found 6 non equivalent sudoku-matrix with a determinant equal to $929,587,995$.

      Here they are in lexicographic form :



      124359678539687241867214395248931756391765482675428913486192537753846129912573864
      124389567398675214657142938271934856586217493943568721419853672762491385835726149
      127345689534698217869271354245983761398716425671452938483169572752834196916527843
      128379456397645821654182793273964185581237649946518372415823967769451238832796514
      134278569569341827827695134298456371371982645645713298416837952783529416952164783
      136259478529847631748631259295784163361925847487163925613592784874316592952478316 `


      The sudoku-matrix given in Peter's note is equivalent to line 3.
      Here is the second line as example:

      $$
      pmatrix {1&2&4&3&8&9&5&6&7\3&9&8&6&7&5&2&1&4\6&5&7&1&4&2&9&3&8\2&7&1&9&3&4&8&5&6\5&8&6&2&1&7&4&9&3\9&4&3&5&6&8&7&2&1\4&1&9&8&5&3&6&7&2\7&6&2&4&9&1&3&8&5\8&3&5&7&2&6&1&4&9}
      $$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        I found 6 non equivalent sudoku-matrix with a determinant equal to $929,587,995$.

        Here they are in lexicographic form :



        124359678539687241867214395248931756391765482675428913486192537753846129912573864
        124389567398675214657142938271934856586217493943568721419853672762491385835726149
        127345689534698217869271354245983761398716425671452938483169572752834196916527843
        128379456397645821654182793273964185581237649946518372415823967769451238832796514
        134278569569341827827695134298456371371982645645713298416837952783529416952164783
        136259478529847631748631259295784163361925847487163925613592784874316592952478316 `


        The sudoku-matrix given in Peter's note is equivalent to line 3.
        Here is the second line as example:

        $$
        pmatrix {1&2&4&3&8&9&5&6&7\3&9&8&6&7&5&2&1&4\6&5&7&1&4&2&9&3&8\2&7&1&9&3&4&8&5&6\5&8&6&2&1&7&4&9&3\9&4&3&5&6&8&7&2&1\4&1&9&8&5&3&6&7&2\7&6&2&4&9&1&3&8&5\8&3&5&7&2&6&1&4&9}
        $$






        share|cite|improve this answer











        $endgroup$



        I found 6 non equivalent sudoku-matrix with a determinant equal to $929,587,995$.

        Here they are in lexicographic form :



        124359678539687241867214395248931756391765482675428913486192537753846129912573864
        124389567398675214657142938271934856586217493943568721419853672762491385835726149
        127345689534698217869271354245983761398716425671452938483169572752834196916527843
        128379456397645821654182793273964185581237649946518372415823967769451238832796514
        134278569569341827827695134298456371371982645645713298416837952783529416952164783
        136259478529847631748631259295784163361925847487163925613592784874316592952478316 `


        The sudoku-matrix given in Peter's note is equivalent to line 3.
        Here is the second line as example:

        $$
        pmatrix {1&2&4&3&8&9&5&6&7\3&9&8&6&7&5&2&1&4\6&5&7&1&4&2&9&3&8\2&7&1&9&3&4&8&5&6\5&8&6&2&1&7&4&9&3\9&4&3&5&6&8&7&2&1\4&1&9&8&5&3&6&7&2\7&6&2&4&9&1&3&8&5\8&3&5&7&2&6&1&4&9}
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 26 '17 at 20:45









        Anton Grudkin

        2,251719




        2,251719










        answered Jun 13 '15 at 15:38









        JPFJPF

        314




        314






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f873709%2fminimum-and-maximum-determinant-of-a-sudoku-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith