Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} =...












1












$begingroup$


The Fibonacci numbers $F_n$ are recursively defined by



$F_0 = 0, F_1 = 1$



$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$



i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.



ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.



iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The title and question i) are not the same. Also what have you tried?
    $endgroup$
    – mathreadler
    Jan 30 at 12:39












  • $begingroup$
    Possible duplicate of Converting recursive equations into matrices
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:00










  • $begingroup$
    @JyrkiLahtonen, only a duplicate for (i).
    $endgroup$
    – lhf
    Jan 30 at 13:02










  • $begingroup$
    Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:04












  • $begingroup$
    I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
    $endgroup$
    – Diger
    Jan 30 at 15:02
















1












$begingroup$


The Fibonacci numbers $F_n$ are recursively defined by



$F_0 = 0, F_1 = 1$



$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$



i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.



ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.



iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The title and question i) are not the same. Also what have you tried?
    $endgroup$
    – mathreadler
    Jan 30 at 12:39












  • $begingroup$
    Possible duplicate of Converting recursive equations into matrices
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:00










  • $begingroup$
    @JyrkiLahtonen, only a duplicate for (i).
    $endgroup$
    – lhf
    Jan 30 at 13:02










  • $begingroup$
    Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:04












  • $begingroup$
    I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
    $endgroup$
    – Diger
    Jan 30 at 15:02














1












1








1





$begingroup$


The Fibonacci numbers $F_n$ are recursively defined by



$F_0 = 0, F_1 = 1$



$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$



i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.



ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.



iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.










share|cite|improve this question











$endgroup$




The Fibonacci numbers $F_n$ are recursively defined by



$F_0 = 0, F_1 = 1$



$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$



i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.



ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.



iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.







discrete-mathematics fibonacci-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 12:56









Jyrki Lahtonen

110k13172389




110k13172389










asked Jan 30 at 12:38









SomethingSomething

817




817








  • 1




    $begingroup$
    The title and question i) are not the same. Also what have you tried?
    $endgroup$
    – mathreadler
    Jan 30 at 12:39












  • $begingroup$
    Possible duplicate of Converting recursive equations into matrices
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:00










  • $begingroup$
    @JyrkiLahtonen, only a duplicate for (i).
    $endgroup$
    – lhf
    Jan 30 at 13:02










  • $begingroup$
    Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:04












  • $begingroup$
    I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
    $endgroup$
    – Diger
    Jan 30 at 15:02














  • 1




    $begingroup$
    The title and question i) are not the same. Also what have you tried?
    $endgroup$
    – mathreadler
    Jan 30 at 12:39












  • $begingroup$
    Possible duplicate of Converting recursive equations into matrices
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:00










  • $begingroup$
    @JyrkiLahtonen, only a duplicate for (i).
    $endgroup$
    – lhf
    Jan 30 at 13:02










  • $begingroup$
    Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
    $endgroup$
    – Jyrki Lahtonen
    Jan 30 at 13:04












  • $begingroup$
    I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
    $endgroup$
    – Diger
    Jan 30 at 15:02








1




1




$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39






$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39














$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00




$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00












$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02




$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02












$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04






$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04














$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02




$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02










3 Answers
3






active

oldest

votes


















0












$begingroup$

Just try to prove those by induction on $ninmathbb{N}$.



For example, the "induction step" for the second exercise is:



Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$



Try the same approach in the other exercises. Don't forget the base cases.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    It seems that (ii) and (iii) are meant to be solved using (i).
    $endgroup$
    – lhf
    Jan 30 at 12:51





















0












$begingroup$

Hint:



(i) Easy induction.



(ii)
Note that
$$
begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
$$



(iii) Take determinants.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    i) Diagonalize the RHS matrix:
    $$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
    begin{pmatrix}psi&phi\ 1&1end{pmatrix}
    begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
    begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
    begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
    begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
    begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
    begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$

    Note: $phicdot psi=-1$.






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093473%2fshow-that-beginbmatrixf-n1f-n-f-nf-n-1-endbmatrix-beginbmatrix%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Just try to prove those by induction on $ninmathbb{N}$.



      For example, the "induction step" for the second exercise is:



      Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$



      Try the same approach in the other exercises. Don't forget the base cases.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        It seems that (ii) and (iii) are meant to be solved using (i).
        $endgroup$
        – lhf
        Jan 30 at 12:51


















      0












      $begingroup$

      Just try to prove those by induction on $ninmathbb{N}$.



      For example, the "induction step" for the second exercise is:



      Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$



      Try the same approach in the other exercises. Don't forget the base cases.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        It seems that (ii) and (iii) are meant to be solved using (i).
        $endgroup$
        – lhf
        Jan 30 at 12:51
















      0












      0








      0





      $begingroup$

      Just try to prove those by induction on $ninmathbb{N}$.



      For example, the "induction step" for the second exercise is:



      Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$



      Try the same approach in the other exercises. Don't forget the base cases.






      share|cite|improve this answer











      $endgroup$



      Just try to prove those by induction on $ninmathbb{N}$.



      For example, the "induction step" for the second exercise is:



      Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$



      Try the same approach in the other exercises. Don't forget the base cases.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 30 at 12:50

























      answered Jan 30 at 12:44









      Don FanucciDon Fanucci

      1,320421




      1,320421












      • $begingroup$
        It seems that (ii) and (iii) are meant to be solved using (i).
        $endgroup$
        – lhf
        Jan 30 at 12:51




















      • $begingroup$
        It seems that (ii) and (iii) are meant to be solved using (i).
        $endgroup$
        – lhf
        Jan 30 at 12:51


















      $begingroup$
      It seems that (ii) and (iii) are meant to be solved using (i).
      $endgroup$
      – lhf
      Jan 30 at 12:51






      $begingroup$
      It seems that (ii) and (iii) are meant to be solved using (i).
      $endgroup$
      – lhf
      Jan 30 at 12:51













      0












      $begingroup$

      Hint:



      (i) Easy induction.



      (ii)
      Note that
      $$
      begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
      begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
      $$



      (iii) Take determinants.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Hint:



        (i) Easy induction.



        (ii)
        Note that
        $$
        begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
        begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
        $$



        (iii) Take determinants.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Hint:



          (i) Easy induction.



          (ii)
          Note that
          $$
          begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
          begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
          $$



          (iii) Take determinants.






          share|cite|improve this answer









          $endgroup$



          Hint:



          (i) Easy induction.



          (ii)
          Note that
          $$
          begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
          begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
          $$



          (iii) Take determinants.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 30 at 12:59









          lhflhf

          167k11172404




          167k11172404























              0












              $begingroup$

              i) Diagonalize the RHS matrix:
              $$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
              begin{pmatrix}psi&phi\ 1&1end{pmatrix}
              begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
              begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
              begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
              begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
              begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
              begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$

              Note: $phicdot psi=-1$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                i) Diagonalize the RHS matrix:
                $$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
                begin{pmatrix}psi&phi\ 1&1end{pmatrix}
                begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
                begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
                begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
                begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
                begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
                begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$

                Note: $phicdot psi=-1$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  i) Diagonalize the RHS matrix:
                  $$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
                  begin{pmatrix}psi&phi\ 1&1end{pmatrix}
                  begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
                  begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
                  begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
                  begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
                  begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
                  begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$

                  Note: $phicdot psi=-1$.






                  share|cite|improve this answer









                  $endgroup$



                  i) Diagonalize the RHS matrix:
                  $$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
                  begin{pmatrix}psi&phi\ 1&1end{pmatrix}
                  begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
                  begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
                  begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
                  begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
                  begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
                  begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$

                  Note: $phicdot psi=-1$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 30 at 13:51









                  farruhotafarruhota

                  21.8k2842




                  21.8k2842






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093473%2fshow-that-beginbmatrixf-n1f-n-f-nf-n-1-endbmatrix-beginbmatrix%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith