Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} =...
$begingroup$
The Fibonacci numbers $F_n$ are recursively defined by
$F_0 = 0, F_1 = 1$
$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$
i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.
ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.
iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.
discrete-mathematics fibonacci-numbers
$endgroup$
add a comment |
$begingroup$
The Fibonacci numbers $F_n$ are recursively defined by
$F_0 = 0, F_1 = 1$
$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$
i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.
ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.
iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.
discrete-mathematics fibonacci-numbers
$endgroup$
1
$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39
$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00
$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02
$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04
$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02
add a comment |
$begingroup$
The Fibonacci numbers $F_n$ are recursively defined by
$F_0 = 0, F_1 = 1$
$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$
i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.
ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.
iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.
discrete-mathematics fibonacci-numbers
$endgroup$
The Fibonacci numbers $F_n$ are recursively defined by
$F_0 = 0, F_1 = 1$
$F_{n+2} = F_{n+1} + F_n, n = 0,1,...$
i) Show that $begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix} = begin{bmatrix}1&1\1&0end{bmatrix}^n$ for all $n ∈ N$.
ii) Show that $F_0^2 + F_1^2 + ...+F_n^2 = F_n F_{n+1}$ for all $n ∈ N$.
iii) Show that $F_{n-1} F_{n+1} - F_n^2 = (-1)^n$ for all $n ∈ N$.
discrete-mathematics fibonacci-numbers
discrete-mathematics fibonacci-numbers
edited Jan 30 at 12:56


Jyrki Lahtonen
110k13172389
110k13172389
asked Jan 30 at 12:38
SomethingSomething
817
817
1
$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39
$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00
$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02
$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04
$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02
add a comment |
1
$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39
$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00
$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02
$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04
$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02
1
1
$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39
$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39
$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00
$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00
$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02
$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02
$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04
$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04
$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02
$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Just try to prove those by induction on $ninmathbb{N}$.
For example, the "induction step" for the second exercise is:
Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$
Try the same approach in the other exercises. Don't forget the base cases.
$endgroup$
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
add a comment |
$begingroup$
Hint:
(i) Easy induction.
(ii)
Note that
$$
begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
$$
(iii) Take determinants.
$endgroup$
add a comment |
$begingroup$
i) Diagonalize the RHS matrix:
$$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
begin{pmatrix}psi&phi\ 1&1end{pmatrix}
begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$
Note: $phicdot psi=-1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093473%2fshow-that-beginbmatrixf-n1f-n-f-nf-n-1-endbmatrix-beginbmatrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Just try to prove those by induction on $ninmathbb{N}$.
For example, the "induction step" for the second exercise is:
Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$
Try the same approach in the other exercises. Don't forget the base cases.
$endgroup$
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
add a comment |
$begingroup$
Just try to prove those by induction on $ninmathbb{N}$.
For example, the "induction step" for the second exercise is:
Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$
Try the same approach in the other exercises. Don't forget the base cases.
$endgroup$
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
add a comment |
$begingroup$
Just try to prove those by induction on $ninmathbb{N}$.
For example, the "induction step" for the second exercise is:
Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$
Try the same approach in the other exercises. Don't forget the base cases.
$endgroup$
Just try to prove those by induction on $ninmathbb{N}$.
For example, the "induction step" for the second exercise is:
Suppose that $F_0^2+cdots+F_n^2=F_nF_{n+1}$, then $$F_0^2+cdots+F_n^2+F_{n+1}^2=F_nF_{n+1}+F_{n+1}^2=F_{n+1}(F_n+F_{n+1})=F_{n+1}F_{n+2}$$
Try the same approach in the other exercises. Don't forget the base cases.
edited Jan 30 at 12:50
answered Jan 30 at 12:44


Don FanucciDon Fanucci
1,320421
1,320421
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
add a comment |
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
$begingroup$
It seems that (ii) and (iii) are meant to be solved using (i).
$endgroup$
– lhf
Jan 30 at 12:51
add a comment |
$begingroup$
Hint:
(i) Easy induction.
(ii)
Note that
$$
begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
$$
(iii) Take determinants.
$endgroup$
add a comment |
$begingroup$
Hint:
(i) Easy induction.
(ii)
Note that
$$
begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
$$
(iii) Take determinants.
$endgroup$
add a comment |
$begingroup$
Hint:
(i) Easy induction.
(ii)
Note that
$$
begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
$$
(iii) Take determinants.
$endgroup$
Hint:
(i) Easy induction.
(ii)
Note that
$$
begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}^2 =
begin{bmatrix}F_{n+1}^2+F_n^2&*\*&*end{bmatrix}
$$
(iii) Take determinants.
answered Jan 30 at 12:59


lhflhf
167k11172404
167k11172404
add a comment |
add a comment |
$begingroup$
i) Diagonalize the RHS matrix:
$$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
begin{pmatrix}psi&phi\ 1&1end{pmatrix}
begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$
Note: $phicdot psi=-1$.
$endgroup$
add a comment |
$begingroup$
i) Diagonalize the RHS matrix:
$$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
begin{pmatrix}psi&phi\ 1&1end{pmatrix}
begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$
Note: $phicdot psi=-1$.
$endgroup$
add a comment |
$begingroup$
i) Diagonalize the RHS matrix:
$$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
begin{pmatrix}psi&phi\ 1&1end{pmatrix}
begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$
Note: $phicdot psi=-1$.
$endgroup$
i) Diagonalize the RHS matrix:
$$begin{pmatrix}1&1\ 1&0end{pmatrix}^n=
begin{pmatrix}psi&phi\ 1&1end{pmatrix}
begin{pmatrix}psi^n &0\ 0&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}psi^{n+1}&phi^{n+1}\ psi^n&phi^nend{pmatrix}
begin{pmatrix}-frac{1}{sqrt{5}}&frac{phi}{sqrt{5}}\ frac1{sqrt{5}}&-frac{psi}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}frac{phi^{n+1}-psi^{n+1}}{sqrt{5}}&frac{phi^n-psi^n}{sqrt{5}}\ frac{phi^n-psi^n}{sqrt{5}}&frac{phi^{n-1}-psi^{n-1}}{sqrt{5}}end{pmatrix}=\
begin{pmatrix}F_{n+1}&F_n\ F_n&F_{n-1}end{pmatrix}.$$
Note: $phicdot psi=-1$.
answered Jan 30 at 13:51


farruhotafarruhota
21.8k2842
21.8k2842
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093473%2fshow-that-beginbmatrixf-n1f-n-f-nf-n-1-endbmatrix-beginbmatrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The title and question i) are not the same. Also what have you tried?
$endgroup$
– mathreadler
Jan 30 at 12:39
$begingroup$
Possible duplicate of Converting recursive equations into matrices
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:00
$begingroup$
@JyrkiLahtonen, only a duplicate for (i).
$endgroup$
– lhf
Jan 30 at 13:02
$begingroup$
Well, A) it answers part (iii) as well, B) there should be only one question.per post. It is highly likely that the other parts have been covered earlier as well.
$endgroup$
– Jyrki Lahtonen
Jan 30 at 13:04
$begingroup$
I guess the easiest way it to multiply the equation by $$begin{bmatrix}1&1\1&0end{bmatrix}$$ and then the RHS is $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix}$$ by assumption and you just need to evaluate $$begin{bmatrix}F_{n+1}&F_n\F_n&F_{n-1}end{bmatrix}begin{bmatrix}1&1\1&0end{bmatrix}=begin{bmatrix}F_{n+1}+F_n&F_{n+1}\F_n+F_{n-1}&F_{n}end{bmatrix}$$ which by the Fibonacci recursion however matches $$begin{bmatrix}F_{n+2}&F_{n+1}\F_{n+1}&F_{n}end{bmatrix} , .$$ For iii) just take the determinant.
$endgroup$
– Diger
Jan 30 at 15:02