sum of Time complexities
$begingroup$
Question: Say we have $f(n) = O(n)$ and $g(n) = O(n)$, Show (or not) that $f(n) + c g(k) = O(n+k)$
Solution:
We have : $f(n) = O(n) Leftrightarrow exists a textrm{ and } n_0 textrm{ s.t. } f(n) leq a cdot n forall n geq n_0$
and similarly: $g(k) = O(k) Leftrightarrow exists b textrm{ and } k_0 textrm{ s.t. } g(k) leq b cdot k forall n geq k_0$
so
$$
f(n) + cg(k) leq acdot O(n) + c cdot b cdot O(k)
$$
But at this point I start thinking maybe the statement does not make sense, how could we have one algorithm running on two different input sizes.
Any Hints would be much appreciated! Thank you!
proof-verification asymptotics
$endgroup$
add a comment |
$begingroup$
Question: Say we have $f(n) = O(n)$ and $g(n) = O(n)$, Show (or not) that $f(n) + c g(k) = O(n+k)$
Solution:
We have : $f(n) = O(n) Leftrightarrow exists a textrm{ and } n_0 textrm{ s.t. } f(n) leq a cdot n forall n geq n_0$
and similarly: $g(k) = O(k) Leftrightarrow exists b textrm{ and } k_0 textrm{ s.t. } g(k) leq b cdot k forall n geq k_0$
so
$$
f(n) + cg(k) leq acdot O(n) + c cdot b cdot O(k)
$$
But at this point I start thinking maybe the statement does not make sense, how could we have one algorithm running on two different input sizes.
Any Hints would be much appreciated! Thank you!
proof-verification asymptotics
$endgroup$
add a comment |
$begingroup$
Question: Say we have $f(n) = O(n)$ and $g(n) = O(n)$, Show (or not) that $f(n) + c g(k) = O(n+k)$
Solution:
We have : $f(n) = O(n) Leftrightarrow exists a textrm{ and } n_0 textrm{ s.t. } f(n) leq a cdot n forall n geq n_0$
and similarly: $g(k) = O(k) Leftrightarrow exists b textrm{ and } k_0 textrm{ s.t. } g(k) leq b cdot k forall n geq k_0$
so
$$
f(n) + cg(k) leq acdot O(n) + c cdot b cdot O(k)
$$
But at this point I start thinking maybe the statement does not make sense, how could we have one algorithm running on two different input sizes.
Any Hints would be much appreciated! Thank you!
proof-verification asymptotics
$endgroup$
Question: Say we have $f(n) = O(n)$ and $g(n) = O(n)$, Show (or not) that $f(n) + c g(k) = O(n+k)$
Solution:
We have : $f(n) = O(n) Leftrightarrow exists a textrm{ and } n_0 textrm{ s.t. } f(n) leq a cdot n forall n geq n_0$
and similarly: $g(k) = O(k) Leftrightarrow exists b textrm{ and } k_0 textrm{ s.t. } g(k) leq b cdot k forall n geq k_0$
so
$$
f(n) + cg(k) leq acdot O(n) + c cdot b cdot O(k)
$$
But at this point I start thinking maybe the statement does not make sense, how could we have one algorithm running on two different input sizes.
Any Hints would be much appreciated! Thank you!
proof-verification asymptotics
proof-verification asymptotics
edited Feb 1 at 16:39


YuiTo Cheng
2,3694937
2,3694937
asked Feb 1 at 15:45


rannoudanamesrannoudanames
570717
570717
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $n+k ge n_0 + k_0$, you have
$$vert f(n)+ c g(k) vert le vert f(n) vert + c vert g(k) vert le an+cbk le max(a,cb)(n+k)$$
So indeed saying that $f(n) + c g(k) = O(n+k)$ makes sense using Big O notation.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096391%2fsum-of-time-complexities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $n+k ge n_0 + k_0$, you have
$$vert f(n)+ c g(k) vert le vert f(n) vert + c vert g(k) vert le an+cbk le max(a,cb)(n+k)$$
So indeed saying that $f(n) + c g(k) = O(n+k)$ makes sense using Big O notation.
$endgroup$
add a comment |
$begingroup$
For $n+k ge n_0 + k_0$, you have
$$vert f(n)+ c g(k) vert le vert f(n) vert + c vert g(k) vert le an+cbk le max(a,cb)(n+k)$$
So indeed saying that $f(n) + c g(k) = O(n+k)$ makes sense using Big O notation.
$endgroup$
add a comment |
$begingroup$
For $n+k ge n_0 + k_0$, you have
$$vert f(n)+ c g(k) vert le vert f(n) vert + c vert g(k) vert le an+cbk le max(a,cb)(n+k)$$
So indeed saying that $f(n) + c g(k) = O(n+k)$ makes sense using Big O notation.
$endgroup$
For $n+k ge n_0 + k_0$, you have
$$vert f(n)+ c g(k) vert le vert f(n) vert + c vert g(k) vert le an+cbk le max(a,cb)(n+k)$$
So indeed saying that $f(n) + c g(k) = O(n+k)$ makes sense using Big O notation.
answered Feb 1 at 16:40


mathcounterexamples.netmathcounterexamples.net
26.9k22158
26.9k22158
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096391%2fsum-of-time-complexities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown