What is the numerical value of $(-3)^{pi}$












0












$begingroup$


As the title suggest what is the numerical value of $(-3)^{pi}$?



could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The numerical value is exactly $;(-3)^pi;$ ...
    $endgroup$
    – DonAntonio
    Jan 29 at 17:29






  • 1




    $begingroup$
    Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
    $endgroup$
    – Théophile
    Jan 29 at 17:29










  • $begingroup$
    @Théophile thanks man i wanted to just didnt know how!.
    $endgroup$
    – KARAM JABER
    Jan 29 at 17:30






  • 1




    $begingroup$
    $$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 29 at 17:31






  • 2




    $begingroup$
    The imaginary part is due to $(-1)^x$.
    $endgroup$
    – karakfa
    Jan 29 at 17:32
















0












$begingroup$


As the title suggest what is the numerical value of $(-3)^{pi}$?



could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The numerical value is exactly $;(-3)^pi;$ ...
    $endgroup$
    – DonAntonio
    Jan 29 at 17:29






  • 1




    $begingroup$
    Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
    $endgroup$
    – Théophile
    Jan 29 at 17:29










  • $begingroup$
    @Théophile thanks man i wanted to just didnt know how!.
    $endgroup$
    – KARAM JABER
    Jan 29 at 17:30






  • 1




    $begingroup$
    $$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 29 at 17:31






  • 2




    $begingroup$
    The imaginary part is due to $(-1)^x$.
    $endgroup$
    – karakfa
    Jan 29 at 17:32














0












0








0





$begingroup$


As the title suggest what is the numerical value of $(-3)^{pi}$?



could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?










share|cite|improve this question











$endgroup$




As the title suggest what is the numerical value of $(-3)^{pi}$?



could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?







numerical-methods pi






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 17:38









Mohammad Zuhair Khan

1,6792625




1,6792625










asked Jan 29 at 17:27









KARAM JABERKARAM JABER

1033




1033












  • $begingroup$
    The numerical value is exactly $;(-3)^pi;$ ...
    $endgroup$
    – DonAntonio
    Jan 29 at 17:29






  • 1




    $begingroup$
    Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
    $endgroup$
    – Théophile
    Jan 29 at 17:29










  • $begingroup$
    @Théophile thanks man i wanted to just didnt know how!.
    $endgroup$
    – KARAM JABER
    Jan 29 at 17:30






  • 1




    $begingroup$
    $$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 29 at 17:31






  • 2




    $begingroup$
    The imaginary part is due to $(-1)^x$.
    $endgroup$
    – karakfa
    Jan 29 at 17:32


















  • $begingroup$
    The numerical value is exactly $;(-3)^pi;$ ...
    $endgroup$
    – DonAntonio
    Jan 29 at 17:29






  • 1




    $begingroup$
    Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
    $endgroup$
    – Théophile
    Jan 29 at 17:29










  • $begingroup$
    @Théophile thanks man i wanted to just didnt know how!.
    $endgroup$
    – KARAM JABER
    Jan 29 at 17:30






  • 1




    $begingroup$
    $$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 29 at 17:31






  • 2




    $begingroup$
    The imaginary part is due to $(-1)^x$.
    $endgroup$
    – karakfa
    Jan 29 at 17:32
















$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29




$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29




1




1




$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29




$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29












$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30




$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30




1




1




$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31




$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31




2




2




$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32




$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32










1 Answer
1






active

oldest

votes


















2












$begingroup$

Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is



$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$



where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is



$$e^{ipi^2}=cospi^2+isinpi^2$$



With WolframAlpha I get this numerical approximation:



$$(-3)^piapprox -28.47456 -i, 13.57354$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    $cos pi^2 approx frac12(pi*(pi-3))^2-1$
    $endgroup$
    – karakfa
    Jan 29 at 17:45














Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092468%2fwhat-is-the-numerical-value-of-3-pi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is



$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$



where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is



$$e^{ipi^2}=cospi^2+isinpi^2$$



With WolframAlpha I get this numerical approximation:



$$(-3)^piapprox -28.47456 -i, 13.57354$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    $cos pi^2 approx frac12(pi*(pi-3))^2-1$
    $endgroup$
    – karakfa
    Jan 29 at 17:45


















2












$begingroup$

Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is



$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$



where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is



$$e^{ipi^2}=cospi^2+isinpi^2$$



With WolframAlpha I get this numerical approximation:



$$(-3)^piapprox -28.47456 -i, 13.57354$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    $cos pi^2 approx frac12(pi*(pi-3))^2-1$
    $endgroup$
    – karakfa
    Jan 29 at 17:45
















2












2








2





$begingroup$

Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is



$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$



where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is



$$e^{ipi^2}=cospi^2+isinpi^2$$



With WolframAlpha I get this numerical approximation:



$$(-3)^piapprox -28.47456 -i, 13.57354$$






share|cite|improve this answer











$endgroup$



Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is



$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$



where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is



$$e^{ipi^2}=cospi^2+isinpi^2$$



With WolframAlpha I get this numerical approximation:



$$(-3)^piapprox -28.47456 -i, 13.57354$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 29 at 18:00

























answered Jan 29 at 17:36









MasacrosoMasacroso

13.1k41747




13.1k41747












  • $begingroup$
    $cos pi^2 approx frac12(pi*(pi-3))^2-1$
    $endgroup$
    – karakfa
    Jan 29 at 17:45




















  • $begingroup$
    $cos pi^2 approx frac12(pi*(pi-3))^2-1$
    $endgroup$
    – karakfa
    Jan 29 at 17:45


















$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45






$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092468%2fwhat-is-the-numerical-value-of-3-pi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith