What is the numerical value of $(-3)^{pi}$
$begingroup$
As the title suggest what is the numerical value of $(-3)^{pi}$?
could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?
numerical-methods pi
$endgroup$
|
show 3 more comments
$begingroup$
As the title suggest what is the numerical value of $(-3)^{pi}$?
could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?
numerical-methods pi
$endgroup$
$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29
1
$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29
$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30
1
$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31
2
$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32
|
show 3 more comments
$begingroup$
As the title suggest what is the numerical value of $(-3)^{pi}$?
could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?
numerical-methods pi
$endgroup$
As the title suggest what is the numerical value of $(-3)^{pi}$?
could we derive an answer using numerical analysis something along the lines of well if its basically $(-3) cdot(-3) cdot (-3) cdot(-3)^{pi-3}$?
numerical-methods pi
numerical-methods pi
edited Jan 29 at 17:38


Mohammad Zuhair Khan
1,6792625
1,6792625
asked Jan 29 at 17:27


KARAM JABERKARAM JABER
1033
1033
$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29
1
$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29
$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30
1
$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31
2
$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32
|
show 3 more comments
$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29
1
$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29
$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30
1
$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31
2
$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32
$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29
$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29
1
1
$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29
$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29
$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30
$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30
1
1
$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31
$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31
2
2
$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32
$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32
|
show 3 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is
$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$
where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is
$$e^{ipi^2}=cospi^2+isinpi^2$$
With WolframAlpha I get this numerical approximation:
$$(-3)^piapprox -28.47456 -i, 13.57354$$
$endgroup$
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092468%2fwhat-is-the-numerical-value-of-3-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is
$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$
where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is
$$e^{ipi^2}=cospi^2+isinpi^2$$
With WolframAlpha I get this numerical approximation:
$$(-3)^piapprox -28.47456 -i, 13.57354$$
$endgroup$
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
add a comment |
$begingroup$
Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is
$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$
where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is
$$e^{ipi^2}=cospi^2+isinpi^2$$
With WolframAlpha I get this numerical approximation:
$$(-3)^piapprox -28.47456 -i, 13.57354$$
$endgroup$
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
add a comment |
$begingroup$
Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is
$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$
where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is
$$e^{ipi^2}=cospi^2+isinpi^2$$
With WolframAlpha I get this numerical approximation:
$$(-3)^piapprox -28.47456 -i, 13.57354$$
$endgroup$
Mathematicians generally define powers of negative real numbers using the principal value of the complex logarithm, that is
$$(-3)^pi:= e^{piln(-3)}=e^{pi(ln|-3|+iarg(-3))}=e^{piln 3+ipi^2}=3^picdot e^{ipi^2}$$
where $e^{ipi^2}$ is the complex number defined by a vector on the complex plane of length $1$ such that the angle with the real line is $pi^2$, that is
$$e^{ipi^2}=cospi^2+isinpi^2$$
With WolframAlpha I get this numerical approximation:
$$(-3)^piapprox -28.47456 -i, 13.57354$$
edited Jan 29 at 18:00
answered Jan 29 at 17:36
MasacrosoMasacroso
13.1k41747
13.1k41747
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
add a comment |
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
$begingroup$
$cos pi^2 approx frac12(pi*(pi-3))^2-1$
$endgroup$
– karakfa
Jan 29 at 17:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092468%2fwhat-is-the-numerical-value-of-3-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The numerical value is exactly $;(-3)^pi;$ ...
$endgroup$
– DonAntonio
Jan 29 at 17:29
1
$begingroup$
Welcome to MSE. Please see this handy formatting reference to learn how to typeset math.
$endgroup$
– Théophile
Jan 29 at 17:29
$begingroup$
@Théophile thanks man i wanted to just didnt know how!.
$endgroup$
– KARAM JABER
Jan 29 at 17:30
1
$begingroup$
$$(-3)^{pi}=e^{pi ln (-3)}=e^{pi cdot (ln 3+mathrm ipi)}=e^{pi ln 3}cdot e^{mathrm i pi^2}$$
$endgroup$
– Mohammad Zuhair Khan
Jan 29 at 17:31
2
$begingroup$
The imaginary part is due to $(-1)^x$.
$endgroup$
– karakfa
Jan 29 at 17:32