Chernoff Bound Variantion.
How can we prove
$latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)
When I have already proved that:
$latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)
How can i extend the second Prof to show that (1) is also true.
Solution to 2
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
> 0 leq delta leq 1 quad quad $ (1)
Consider the denominator part to be,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
> quad $(2)
We can apply Taylor’s Series on,
$ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $
Therefore,
$ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
> frac{delta^4}{4} + ... quad quad $(a)
$ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
> frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $ (b)
Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,
$ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
> frac{delta^3}{6} + ... $
Ignoring higher order terms,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^3}{6} $
We can further write it as,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta.delta^2}{6} $
And take an assumption such that,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^2}{6} $
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $
Now, from Eq. 2,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
> e^{delta+ frac{delta^2}{3}} $
Therefore, Eq. 1 becomes,
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
> frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
> frac{delta^2}{3}}}]^{mu} $
$ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $
probability-theory inequality
add a comment |
How can we prove
$latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)
When I have already proved that:
$latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)
How can i extend the second Prof to show that (1) is also true.
Solution to 2
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
> 0 leq delta leq 1 quad quad $ (1)
Consider the denominator part to be,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
> quad $(2)
We can apply Taylor’s Series on,
$ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $
Therefore,
$ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
> frac{delta^4}{4} + ... quad quad $(a)
$ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
> frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $ (b)
Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,
$ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
> frac{delta^3}{6} + ... $
Ignoring higher order terms,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^3}{6} $
We can further write it as,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta.delta^2}{6} $
And take an assumption such that,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^2}{6} $
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $
Now, from Eq. 2,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
> e^{delta+ frac{delta^2}{3}} $
Therefore, Eq. 1 becomes,
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
> frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
> frac{delta^2}{3}}}]^{mu} $
$ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $
probability-theory inequality
add a comment |
How can we prove
$latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)
When I have already proved that:
$latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)
How can i extend the second Prof to show that (1) is also true.
Solution to 2
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
> 0 leq delta leq 1 quad quad $ (1)
Consider the denominator part to be,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
> quad $(2)
We can apply Taylor’s Series on,
$ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $
Therefore,
$ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
> frac{delta^4}{4} + ... quad quad $(a)
$ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
> frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $ (b)
Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,
$ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
> frac{delta^3}{6} + ... $
Ignoring higher order terms,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^3}{6} $
We can further write it as,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta.delta^2}{6} $
And take an assumption such that,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^2}{6} $
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $
Now, from Eq. 2,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
> e^{delta+ frac{delta^2}{3}} $
Therefore, Eq. 1 becomes,
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
> frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
> frac{delta^2}{3}}}]^{mu} $
$ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $
probability-theory inequality
How can we prove
$latex P( X geq (1+delta)mu) leq {e}^{frac{-delta}{3}{mu}} quad where quad delta > 1 $ -----------(1)
When I have already proved that:
$latex ( X geq (1+delta)mu) leq {e}^{frac{-delta^2}{3}{mu}} quad where quad 0 leq delta leq 1 $ -----------(2)
How can i extend the second Prof to show that (1) is also true.
Solution to 2
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu} leq {e}^{frac{-delta^2}{3}{mu}} quad where quad
> 0 leq delta leq 1 quad quad $ (1)
Consider the denominator part to be,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} quad
> quad $(2)
We can apply Taylor’s Series on,
$ {(1+delta)ln(1+delta)} quad As quad delta=[0,1] $
Therefore,
$ ln(1+delta) = delta - frac{delta^2}{2} + frac{delta^3}{3} -
> frac{delta^4}{4} + ... quad quad $(a)
$ delta ln(1+delta) = delta^2 - frac{delta^3}{2} +
> frac{delta^4}{3} - frac{delta^5}{4} + ... quad quad $ (b)
Adding Eq. a and b and taking $ ln(1+delta) $ common, we get,
$ (1+delta) ln(1+delta) = delta + frac{delta^2}{2} -
> frac{delta^3}{6} + ... $
Ignoring higher order terms,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^3}{6} $
We can further write it as,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta.delta^2}{6} $
And take an assumption such that,
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{2} -
> frac{delta^2}{6} $
$ (1+delta) ln(1+delta) geq delta + frac{delta^2}{3} $
Now, from Eq. 2,
$ {(1 + delta)^{1 + delta}} = e^{(1+delta)ln(1+delta)} =
> e^{delta+ frac{delta^2}{3}} $
Therefore, Eq. 1 becomes,
$ P( X geq (1+delta)mu) leq [frac {e^{delta}} {(1 + delta)^{1 +
> delta}}]^{mu}= [frac {e^{delta}} {e^{delta+
> frac{delta^2}{3}}}]^{mu} = [ {e^{delta - delta-
> frac{delta^2}{3}}}]^{mu} $
$ P( X geq (1+delta)mu) leq {e^{-frac{delta^2}{3}}}^{mu} $
probability-theory inequality
probability-theory inequality
asked Nov 21 '18 at 21:43
Muhammad Fasiurrehman SohiMuhammad Fasiurrehman Sohi
187
187
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008411%2fchernoff-bound-variantion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008411%2fchernoff-bound-variantion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown