Complex integration lemma: shorter proof?












4
















The black line is the branch cut.



Lemma




$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.




Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.



Is there a shorter proof of this lemma?










share|cite|improve this question



























    4
















    The black line is the branch cut.



    Lemma




    $$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.




    Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.



    Is there a shorter proof of this lemma?










    share|cite|improve this question

























      4












      4








      4


      2







      The black line is the branch cut.



      Lemma




      $$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.




      Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.



      Is there a shorter proof of this lemma?










      share|cite|improve this question















      The black line is the branch cut.



      Lemma




      $$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.




      Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.



      Is there a shorter proof of this lemma?







      complex-analysis complex-integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 19 '18 at 0:27









      Szeto

      6,4362926




      6,4362926






















          1 Answer
          1






          active

          oldest

          votes


















          1














          I just found a short proof using integration by parts:



          Let $hat k=ifrac{s}{|s|}$.



          Let $P=pe^{itheta}, Q=qe^{itheta}$.



          Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.



          Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)



          Then,
          $$
          begin{align}
          &~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
          +lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
          +F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)(2pi i)+F(Q)(-2pi i) \
          &=-2pi ibigg(F(Q)-F(P)bigg) \
          &=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
          end{align}
          $$



          Q.E.D.



          Essentially the proof is only 9 lines long.






          share|cite|improve this answer



















          • 1




            You may accept your own answer(?)
            – Tianlalu
            Nov 30 '18 at 7:36











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004332%2fcomplex-integration-lemma-shorter-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          I just found a short proof using integration by parts:



          Let $hat k=ifrac{s}{|s|}$.



          Let $P=pe^{itheta}, Q=qe^{itheta}$.



          Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.



          Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)



          Then,
          $$
          begin{align}
          &~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
          +lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
          +F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)(2pi i)+F(Q)(-2pi i) \
          &=-2pi ibigg(F(Q)-F(P)bigg) \
          &=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
          end{align}
          $$



          Q.E.D.



          Essentially the proof is only 9 lines long.






          share|cite|improve this answer



















          • 1




            You may accept your own answer(?)
            – Tianlalu
            Nov 30 '18 at 7:36
















          1














          I just found a short proof using integration by parts:



          Let $hat k=ifrac{s}{|s|}$.



          Let $P=pe^{itheta}, Q=qe^{itheta}$.



          Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.



          Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)



          Then,
          $$
          begin{align}
          &~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
          +lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
          +F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)(2pi i)+F(Q)(-2pi i) \
          &=-2pi ibigg(F(Q)-F(P)bigg) \
          &=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
          end{align}
          $$



          Q.E.D.



          Essentially the proof is only 9 lines long.






          share|cite|improve this answer



















          • 1




            You may accept your own answer(?)
            – Tianlalu
            Nov 30 '18 at 7:36














          1












          1








          1






          I just found a short proof using integration by parts:



          Let $hat k=ifrac{s}{|s|}$.



          Let $P=pe^{itheta}, Q=qe^{itheta}$.



          Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.



          Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)



          Then,
          $$
          begin{align}
          &~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
          +lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
          +F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)(2pi i)+F(Q)(-2pi i) \
          &=-2pi ibigg(F(Q)-F(P)bigg) \
          &=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
          end{align}
          $$



          Q.E.D.



          Essentially the proof is only 9 lines long.






          share|cite|improve this answer














          I just found a short proof using integration by parts:



          Let $hat k=ifrac{s}{|s|}$.



          Let $P=pe^{itheta}, Q=qe^{itheta}$.



          Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.



          Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)



          Then,
          $$
          begin{align}
          &~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
          &=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
          +lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
          +F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
          &=F(P)(2pi i)+F(Q)(-2pi i) \
          &=-2pi ibigg(F(Q)-F(P)bigg) \
          &=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
          end{align}
          $$



          Q.E.D.



          Essentially the proof is only 9 lines long.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 22 '18 at 5:30

























          answered Nov 20 '18 at 10:17









          Szeto

          6,4362926




          6,4362926








          • 1




            You may accept your own answer(?)
            – Tianlalu
            Nov 30 '18 at 7:36














          • 1




            You may accept your own answer(?)
            – Tianlalu
            Nov 30 '18 at 7:36








          1




          1




          You may accept your own answer(?)
          – Tianlalu
          Nov 30 '18 at 7:36




          You may accept your own answer(?)
          – Tianlalu
          Nov 30 '18 at 7:36


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004332%2fcomplex-integration-lemma-shorter-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          'app-layout' is not a known element: how to share Component with different Modules