Pandas: How to apply function row by row in descening order to multiple columns












0














I have a dataframe df1 with 1000 columns. In each column there is a random value. It looks like:



     0  1   2   3   4   5   6   7   8   9   ...     990 991 992 993 994 995 996 997 998 999
0 23 15 4 4 23 0 38 14 11 14 ... 22 3 25 3 24 8 1 14 18 27


I have a second dataframe df2 with second-by-second values f that Looks like:



                        dtm     f
0 2018-03-01 00:00:00 +0000 50.135
1 2018-03-01 00:00:01 +0000 50.130
2 2018-03-01 00:00:02 +0000 50.120
3 2018-03-01 00:00:03 +0000 50.112
4 2018-03-01 00:00:04 +0000 50.102
5 2018-03-01 00:00:05 +0000 50.097
6 2018-03-01 00:00:06 +0000 50.095
7 2018-03-01 00:00:07 +0000 50.095
8 2018-03-01 00:00:08 +0000 50.092
9 2018-03-01 00:00:09 +0000 50.095
10 2018-03-01 00:00:10 +0000 50.097
11 2018-03-01 00:00:11 +0000 50.097
12 2018-03-01 00:00:12 +0000 50.097
13 2018-03-01 00:00:13 +0000 50.100
14 2018-03-01 00:00:14 +0000 50.102
15 2018-03-01 00:00:15 +0000 50.105
16 2018-03-01 00:00:16 +0000 50.102
17 2018-03-01 00:00:17 +0000 50.102
18 2018-03-01 00:00:18 +0000 50.100
19 2018-03-01 00:00:19 +0000 50.100
20 2018-03-01 00:00:20 +0000 50.100
21 2018-03-01 00:00:21 +0000 50.097
22 2018-03-01 00:00:22 +0000 50.097
23 2018-03-01 00:00:23 +0000 50.095
24 2018-03-01 00:00:24 +0000 50.092
25 2018-03-01 00:00:25 +0000 50.090
26 2018-03-01 00:00:26 +0000 50.090
27 2018-03-01 00:00:27 +0000 50.087
28 2018-03-01 00:00:28 +0000 50.085
29 2018-03-01 00:00:29 +0000 50.082
... ... ...
86371 2018-03-01 23:59:31 +0000 49.925
86372 2018-03-01 23:59:32 +0000 49.925
86373 2018-03-01 23:59:33 +0000 49.925
86374 2018-03-01 23:59:34 +0000 49.927
86375 2018-03-01 23:59:35 +0000 49.927
86376 2018-03-01 23:59:36 +0000 49.930
86377 2018-03-01 23:59:37 +0000 49.930
86378 2018-03-01 23:59:38 +0000 49.930
86379 2018-03-01 23:59:39 +0000 49.930
86380 2018-03-01 23:59:40 +0000 49.930
86381 2018-03-01 23:59:41 +0000 49.930
86382 2018-03-01 23:59:42 +0000 49.930
86383 2018-03-01 23:59:43 +0000 49.927
86384 2018-03-01 23:59:44 +0000 49.925
86385 2018-03-01 23:59:45 +0000 49.925
86386 2018-03-01 23:59:46 +0000 49.920
86387 2018-03-01 23:59:47 +0000 49.920
86388 2018-03-01 23:59:48 +0000 49.920
86389 2018-03-01 23:59:49 +0000 49.920
86390 2018-03-01 23:59:50 +0000 49.920
86391 2018-03-01 23:59:51 +0000 49.917
86392 2018-03-01 23:59:52 +0000 49.917
86393 2018-03-01 23:59:53 +0000 49.915
86394 2018-03-01 23:59:54 +0000 49.915
86395 2018-03-01 23:59:55 +0000 49.915
86396 2018-03-01 23:59:56 +0000 49.912
86397 2018-03-01 23:59:57 +0000 49.915
86398 2018-03-01 23:59:58 +0000 49.917
86399 2018-03-01 23:59:59 +0000 49.917
86400 2018-03-02 00:00:00 +0000 49.915


Starting from the Initial values of df1, I Need to increase them by 1 each time that f>50 and decrease by 1 whenever f<50. The result should be another dataframe, with 1 row for each second, the relative value, and 1000 columns.
I have tried:



if (f.f>50).any():
df1=df1.apply(lambda x: ((f.f/f.f)*x+1).cumsum())


But it results just in a table with the first line correct and then NaN everywhere else in 86400 rows.



Any help? Thank you in advance










share|improve this question



























    0














    I have a dataframe df1 with 1000 columns. In each column there is a random value. It looks like:



         0  1   2   3   4   5   6   7   8   9   ...     990 991 992 993 994 995 996 997 998 999
    0 23 15 4 4 23 0 38 14 11 14 ... 22 3 25 3 24 8 1 14 18 27


    I have a second dataframe df2 with second-by-second values f that Looks like:



                            dtm     f
    0 2018-03-01 00:00:00 +0000 50.135
    1 2018-03-01 00:00:01 +0000 50.130
    2 2018-03-01 00:00:02 +0000 50.120
    3 2018-03-01 00:00:03 +0000 50.112
    4 2018-03-01 00:00:04 +0000 50.102
    5 2018-03-01 00:00:05 +0000 50.097
    6 2018-03-01 00:00:06 +0000 50.095
    7 2018-03-01 00:00:07 +0000 50.095
    8 2018-03-01 00:00:08 +0000 50.092
    9 2018-03-01 00:00:09 +0000 50.095
    10 2018-03-01 00:00:10 +0000 50.097
    11 2018-03-01 00:00:11 +0000 50.097
    12 2018-03-01 00:00:12 +0000 50.097
    13 2018-03-01 00:00:13 +0000 50.100
    14 2018-03-01 00:00:14 +0000 50.102
    15 2018-03-01 00:00:15 +0000 50.105
    16 2018-03-01 00:00:16 +0000 50.102
    17 2018-03-01 00:00:17 +0000 50.102
    18 2018-03-01 00:00:18 +0000 50.100
    19 2018-03-01 00:00:19 +0000 50.100
    20 2018-03-01 00:00:20 +0000 50.100
    21 2018-03-01 00:00:21 +0000 50.097
    22 2018-03-01 00:00:22 +0000 50.097
    23 2018-03-01 00:00:23 +0000 50.095
    24 2018-03-01 00:00:24 +0000 50.092
    25 2018-03-01 00:00:25 +0000 50.090
    26 2018-03-01 00:00:26 +0000 50.090
    27 2018-03-01 00:00:27 +0000 50.087
    28 2018-03-01 00:00:28 +0000 50.085
    29 2018-03-01 00:00:29 +0000 50.082
    ... ... ...
    86371 2018-03-01 23:59:31 +0000 49.925
    86372 2018-03-01 23:59:32 +0000 49.925
    86373 2018-03-01 23:59:33 +0000 49.925
    86374 2018-03-01 23:59:34 +0000 49.927
    86375 2018-03-01 23:59:35 +0000 49.927
    86376 2018-03-01 23:59:36 +0000 49.930
    86377 2018-03-01 23:59:37 +0000 49.930
    86378 2018-03-01 23:59:38 +0000 49.930
    86379 2018-03-01 23:59:39 +0000 49.930
    86380 2018-03-01 23:59:40 +0000 49.930
    86381 2018-03-01 23:59:41 +0000 49.930
    86382 2018-03-01 23:59:42 +0000 49.930
    86383 2018-03-01 23:59:43 +0000 49.927
    86384 2018-03-01 23:59:44 +0000 49.925
    86385 2018-03-01 23:59:45 +0000 49.925
    86386 2018-03-01 23:59:46 +0000 49.920
    86387 2018-03-01 23:59:47 +0000 49.920
    86388 2018-03-01 23:59:48 +0000 49.920
    86389 2018-03-01 23:59:49 +0000 49.920
    86390 2018-03-01 23:59:50 +0000 49.920
    86391 2018-03-01 23:59:51 +0000 49.917
    86392 2018-03-01 23:59:52 +0000 49.917
    86393 2018-03-01 23:59:53 +0000 49.915
    86394 2018-03-01 23:59:54 +0000 49.915
    86395 2018-03-01 23:59:55 +0000 49.915
    86396 2018-03-01 23:59:56 +0000 49.912
    86397 2018-03-01 23:59:57 +0000 49.915
    86398 2018-03-01 23:59:58 +0000 49.917
    86399 2018-03-01 23:59:59 +0000 49.917
    86400 2018-03-02 00:00:00 +0000 49.915


    Starting from the Initial values of df1, I Need to increase them by 1 each time that f>50 and decrease by 1 whenever f<50. The result should be another dataframe, with 1 row for each second, the relative value, and 1000 columns.
    I have tried:



    if (f.f>50).any():
    df1=df1.apply(lambda x: ((f.f/f.f)*x+1).cumsum())


    But it results just in a table with the first line correct and then NaN everywhere else in 86400 rows.



    Any help? Thank you in advance










    share|improve this question

























      0












      0








      0







      I have a dataframe df1 with 1000 columns. In each column there is a random value. It looks like:



           0  1   2   3   4   5   6   7   8   9   ...     990 991 992 993 994 995 996 997 998 999
      0 23 15 4 4 23 0 38 14 11 14 ... 22 3 25 3 24 8 1 14 18 27


      I have a second dataframe df2 with second-by-second values f that Looks like:



                              dtm     f
      0 2018-03-01 00:00:00 +0000 50.135
      1 2018-03-01 00:00:01 +0000 50.130
      2 2018-03-01 00:00:02 +0000 50.120
      3 2018-03-01 00:00:03 +0000 50.112
      4 2018-03-01 00:00:04 +0000 50.102
      5 2018-03-01 00:00:05 +0000 50.097
      6 2018-03-01 00:00:06 +0000 50.095
      7 2018-03-01 00:00:07 +0000 50.095
      8 2018-03-01 00:00:08 +0000 50.092
      9 2018-03-01 00:00:09 +0000 50.095
      10 2018-03-01 00:00:10 +0000 50.097
      11 2018-03-01 00:00:11 +0000 50.097
      12 2018-03-01 00:00:12 +0000 50.097
      13 2018-03-01 00:00:13 +0000 50.100
      14 2018-03-01 00:00:14 +0000 50.102
      15 2018-03-01 00:00:15 +0000 50.105
      16 2018-03-01 00:00:16 +0000 50.102
      17 2018-03-01 00:00:17 +0000 50.102
      18 2018-03-01 00:00:18 +0000 50.100
      19 2018-03-01 00:00:19 +0000 50.100
      20 2018-03-01 00:00:20 +0000 50.100
      21 2018-03-01 00:00:21 +0000 50.097
      22 2018-03-01 00:00:22 +0000 50.097
      23 2018-03-01 00:00:23 +0000 50.095
      24 2018-03-01 00:00:24 +0000 50.092
      25 2018-03-01 00:00:25 +0000 50.090
      26 2018-03-01 00:00:26 +0000 50.090
      27 2018-03-01 00:00:27 +0000 50.087
      28 2018-03-01 00:00:28 +0000 50.085
      29 2018-03-01 00:00:29 +0000 50.082
      ... ... ...
      86371 2018-03-01 23:59:31 +0000 49.925
      86372 2018-03-01 23:59:32 +0000 49.925
      86373 2018-03-01 23:59:33 +0000 49.925
      86374 2018-03-01 23:59:34 +0000 49.927
      86375 2018-03-01 23:59:35 +0000 49.927
      86376 2018-03-01 23:59:36 +0000 49.930
      86377 2018-03-01 23:59:37 +0000 49.930
      86378 2018-03-01 23:59:38 +0000 49.930
      86379 2018-03-01 23:59:39 +0000 49.930
      86380 2018-03-01 23:59:40 +0000 49.930
      86381 2018-03-01 23:59:41 +0000 49.930
      86382 2018-03-01 23:59:42 +0000 49.930
      86383 2018-03-01 23:59:43 +0000 49.927
      86384 2018-03-01 23:59:44 +0000 49.925
      86385 2018-03-01 23:59:45 +0000 49.925
      86386 2018-03-01 23:59:46 +0000 49.920
      86387 2018-03-01 23:59:47 +0000 49.920
      86388 2018-03-01 23:59:48 +0000 49.920
      86389 2018-03-01 23:59:49 +0000 49.920
      86390 2018-03-01 23:59:50 +0000 49.920
      86391 2018-03-01 23:59:51 +0000 49.917
      86392 2018-03-01 23:59:52 +0000 49.917
      86393 2018-03-01 23:59:53 +0000 49.915
      86394 2018-03-01 23:59:54 +0000 49.915
      86395 2018-03-01 23:59:55 +0000 49.915
      86396 2018-03-01 23:59:56 +0000 49.912
      86397 2018-03-01 23:59:57 +0000 49.915
      86398 2018-03-01 23:59:58 +0000 49.917
      86399 2018-03-01 23:59:59 +0000 49.917
      86400 2018-03-02 00:00:00 +0000 49.915


      Starting from the Initial values of df1, I Need to increase them by 1 each time that f>50 and decrease by 1 whenever f<50. The result should be another dataframe, with 1 row for each second, the relative value, and 1000 columns.
      I have tried:



      if (f.f>50).any():
      df1=df1.apply(lambda x: ((f.f/f.f)*x+1).cumsum())


      But it results just in a table with the first line correct and then NaN everywhere else in 86400 rows.



      Any help? Thank you in advance










      share|improve this question













      I have a dataframe df1 with 1000 columns. In each column there is a random value. It looks like:



           0  1   2   3   4   5   6   7   8   9   ...     990 991 992 993 994 995 996 997 998 999
      0 23 15 4 4 23 0 38 14 11 14 ... 22 3 25 3 24 8 1 14 18 27


      I have a second dataframe df2 with second-by-second values f that Looks like:



                              dtm     f
      0 2018-03-01 00:00:00 +0000 50.135
      1 2018-03-01 00:00:01 +0000 50.130
      2 2018-03-01 00:00:02 +0000 50.120
      3 2018-03-01 00:00:03 +0000 50.112
      4 2018-03-01 00:00:04 +0000 50.102
      5 2018-03-01 00:00:05 +0000 50.097
      6 2018-03-01 00:00:06 +0000 50.095
      7 2018-03-01 00:00:07 +0000 50.095
      8 2018-03-01 00:00:08 +0000 50.092
      9 2018-03-01 00:00:09 +0000 50.095
      10 2018-03-01 00:00:10 +0000 50.097
      11 2018-03-01 00:00:11 +0000 50.097
      12 2018-03-01 00:00:12 +0000 50.097
      13 2018-03-01 00:00:13 +0000 50.100
      14 2018-03-01 00:00:14 +0000 50.102
      15 2018-03-01 00:00:15 +0000 50.105
      16 2018-03-01 00:00:16 +0000 50.102
      17 2018-03-01 00:00:17 +0000 50.102
      18 2018-03-01 00:00:18 +0000 50.100
      19 2018-03-01 00:00:19 +0000 50.100
      20 2018-03-01 00:00:20 +0000 50.100
      21 2018-03-01 00:00:21 +0000 50.097
      22 2018-03-01 00:00:22 +0000 50.097
      23 2018-03-01 00:00:23 +0000 50.095
      24 2018-03-01 00:00:24 +0000 50.092
      25 2018-03-01 00:00:25 +0000 50.090
      26 2018-03-01 00:00:26 +0000 50.090
      27 2018-03-01 00:00:27 +0000 50.087
      28 2018-03-01 00:00:28 +0000 50.085
      29 2018-03-01 00:00:29 +0000 50.082
      ... ... ...
      86371 2018-03-01 23:59:31 +0000 49.925
      86372 2018-03-01 23:59:32 +0000 49.925
      86373 2018-03-01 23:59:33 +0000 49.925
      86374 2018-03-01 23:59:34 +0000 49.927
      86375 2018-03-01 23:59:35 +0000 49.927
      86376 2018-03-01 23:59:36 +0000 49.930
      86377 2018-03-01 23:59:37 +0000 49.930
      86378 2018-03-01 23:59:38 +0000 49.930
      86379 2018-03-01 23:59:39 +0000 49.930
      86380 2018-03-01 23:59:40 +0000 49.930
      86381 2018-03-01 23:59:41 +0000 49.930
      86382 2018-03-01 23:59:42 +0000 49.930
      86383 2018-03-01 23:59:43 +0000 49.927
      86384 2018-03-01 23:59:44 +0000 49.925
      86385 2018-03-01 23:59:45 +0000 49.925
      86386 2018-03-01 23:59:46 +0000 49.920
      86387 2018-03-01 23:59:47 +0000 49.920
      86388 2018-03-01 23:59:48 +0000 49.920
      86389 2018-03-01 23:59:49 +0000 49.920
      86390 2018-03-01 23:59:50 +0000 49.920
      86391 2018-03-01 23:59:51 +0000 49.917
      86392 2018-03-01 23:59:52 +0000 49.917
      86393 2018-03-01 23:59:53 +0000 49.915
      86394 2018-03-01 23:59:54 +0000 49.915
      86395 2018-03-01 23:59:55 +0000 49.915
      86396 2018-03-01 23:59:56 +0000 49.912
      86397 2018-03-01 23:59:57 +0000 49.915
      86398 2018-03-01 23:59:58 +0000 49.917
      86399 2018-03-01 23:59:59 +0000 49.917
      86400 2018-03-02 00:00:00 +0000 49.915


      Starting from the Initial values of df1, I Need to increase them by 1 each time that f>50 and decrease by 1 whenever f<50. The result should be another dataframe, with 1 row for each second, the relative value, and 1000 columns.
      I have tried:



      if (f.f>50).any():
      df1=df1.apply(lambda x: ((f.f/f.f)*x+1).cumsum())


      But it results just in a table with the first line correct and then NaN everywhere else in 86400 rows.



      Any help? Thank you in advance







      python pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 18 '18 at 19:06









      Luca91

      1728




      1728
























          1 Answer
          1






          active

          oldest

          votes


















          0














          Probably not the most memory-efficient solution...



          # Preallocate the result DataFrame
          res = pd.DataFrame(np.tile(df1, (len(df2), 1)))

          # Compute a numpy array of corrections to add to each cell in `res`
          mask = np.where(df2.f > 50, 1, -1)
          adjust = np.tile(mask, (len(res), 1)).T.cumsum(axis=0)

          # Add the adjustment array to the result DataFrame
          res += adjust





          share|improve this answer























          • += adjust? it is not defined
            – Luca91
            Nov 19 '18 at 7:18










          • Argh, sorry, I missed a line - too late in the day. Edited my answer!
            – Peter Leimbigler
            Nov 19 '18 at 12:57











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53364464%2fpandas-how-to-apply-function-row-by-row-in-descening-order-to-multiple-columns%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Probably not the most memory-efficient solution...



          # Preallocate the result DataFrame
          res = pd.DataFrame(np.tile(df1, (len(df2), 1)))

          # Compute a numpy array of corrections to add to each cell in `res`
          mask = np.where(df2.f > 50, 1, -1)
          adjust = np.tile(mask, (len(res), 1)).T.cumsum(axis=0)

          # Add the adjustment array to the result DataFrame
          res += adjust





          share|improve this answer























          • += adjust? it is not defined
            – Luca91
            Nov 19 '18 at 7:18










          • Argh, sorry, I missed a line - too late in the day. Edited my answer!
            – Peter Leimbigler
            Nov 19 '18 at 12:57
















          0














          Probably not the most memory-efficient solution...



          # Preallocate the result DataFrame
          res = pd.DataFrame(np.tile(df1, (len(df2), 1)))

          # Compute a numpy array of corrections to add to each cell in `res`
          mask = np.where(df2.f > 50, 1, -1)
          adjust = np.tile(mask, (len(res), 1)).T.cumsum(axis=0)

          # Add the adjustment array to the result DataFrame
          res += adjust





          share|improve this answer























          • += adjust? it is not defined
            – Luca91
            Nov 19 '18 at 7:18










          • Argh, sorry, I missed a line - too late in the day. Edited my answer!
            – Peter Leimbigler
            Nov 19 '18 at 12:57














          0












          0








          0






          Probably not the most memory-efficient solution...



          # Preallocate the result DataFrame
          res = pd.DataFrame(np.tile(df1, (len(df2), 1)))

          # Compute a numpy array of corrections to add to each cell in `res`
          mask = np.where(df2.f > 50, 1, -1)
          adjust = np.tile(mask, (len(res), 1)).T.cumsum(axis=0)

          # Add the adjustment array to the result DataFrame
          res += adjust





          share|improve this answer














          Probably not the most memory-efficient solution...



          # Preallocate the result DataFrame
          res = pd.DataFrame(np.tile(df1, (len(df2), 1)))

          # Compute a numpy array of corrections to add to each cell in `res`
          mask = np.where(df2.f > 50, 1, -1)
          adjust = np.tile(mask, (len(res), 1)).T.cumsum(axis=0)

          # Add the adjustment array to the result DataFrame
          res += adjust






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 19 '18 at 12:57

























          answered Nov 19 '18 at 0:12









          Peter Leimbigler

          3,7391415




          3,7391415












          • += adjust? it is not defined
            – Luca91
            Nov 19 '18 at 7:18










          • Argh, sorry, I missed a line - too late in the day. Edited my answer!
            – Peter Leimbigler
            Nov 19 '18 at 12:57


















          • += adjust? it is not defined
            – Luca91
            Nov 19 '18 at 7:18










          • Argh, sorry, I missed a line - too late in the day. Edited my answer!
            – Peter Leimbigler
            Nov 19 '18 at 12:57
















          += adjust? it is not defined
          – Luca91
          Nov 19 '18 at 7:18




          += adjust? it is not defined
          – Luca91
          Nov 19 '18 at 7:18












          Argh, sorry, I missed a line - too late in the day. Edited my answer!
          – Peter Leimbigler
          Nov 19 '18 at 12:57




          Argh, sorry, I missed a line - too late in the day. Edited my answer!
          – Peter Leimbigler
          Nov 19 '18 at 12:57


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53364464%2fpandas-how-to-apply-function-row-by-row-in-descening-order-to-multiple-columns%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          'app-layout' is not a known element: how to share Component with different Modules