Compute $int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$ using Gamma function












3












$begingroup$


I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.



I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.



I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!



My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$



I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$

$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$

But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$

when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.



Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?



Thank you so much!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
    $endgroup$
    – Kemono Chen
    Jan 1 at 8:07
















3












$begingroup$


I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.



I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.



I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!



My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$



I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$

$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$

But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$

when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.



Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?



Thank you so much!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
    $endgroup$
    – Kemono Chen
    Jan 1 at 8:07














3












3








3





$begingroup$


I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.



I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.



I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!



My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$



I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$

$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$

But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$

when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.



Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?



Thank you so much!










share|cite|improve this question











$endgroup$




I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.



I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.



I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!



My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$



I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$

$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$

But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$

when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.



Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?



Thank you so much!







complex-analysis gamma-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 8:13







Edward Wang

















asked Jan 1 at 7:52









Edward WangEdward Wang

823512




823512








  • 1




    $begingroup$
    $int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
    $endgroup$
    – Kemono Chen
    Jan 1 at 8:07














  • 1




    $begingroup$
    $int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
    $endgroup$
    – Kemono Chen
    Jan 1 at 8:07








1




1




$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07




$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07










1 Answer
1






active

oldest

votes


















0












$begingroup$

There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?



Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058273%2fcompute-int-0-infty-frac-sin-x-sqrtx-dx-using-gamma-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?



    Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?



      Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?



        Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$






        share|cite|improve this answer









        $endgroup$



        There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?



        Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 8:51









        J.G.J.G.

        23.4k22237




        23.4k22237






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058273%2fcompute-int-0-infty-frac-sin-x-sqrtx-dx-using-gamma-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith