Compute $int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$ using Gamma function
$begingroup$
I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.
I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.
I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!
My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$
I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$
$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$
But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$
when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.
Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?
Thank you so much!
complex-analysis gamma-function
$endgroup$
add a comment |
$begingroup$
I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.
I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.
I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!
My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$
I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$
$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$
But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$
when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.
Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?
Thank you so much!
complex-analysis gamma-function
$endgroup$
1
$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07
add a comment |
$begingroup$
I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.
I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.
I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!
My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$
I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$
$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$
But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$
when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.
Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?
Thank you so much!
complex-analysis gamma-function
$endgroup$
I want to compute
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx$$
using Gamma function.
I know that by change of variable, $y=sqrt{x}$, one gets
$$int_{0}^{+infty} frac{sin x}{sqrt{x}} dx=2int_{0}^{+infty}sin y^2 dy=frac{sqrt{2pi}}{2}$$
by Fresnel's integral.
I try it by considering this:
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx$$
It converges for both real and imaginary part using Dirichlet test, and $0$ is not a problem here. Let the square root take the pricipal branch where $sqrt{1}=1$. Let $y=-ix$, then
$$int_{0}^{+infty}x^{-frac{1}{2}}e^{ix} dx=sqrt{i}int_{0}^{-iinfty}y^{-frac{1}{2}}e^{-y} dy=(frac{sqrt{2}}{2} + frac{sqrt{2}}{2}i)Gamma(frac{1}{2})=frac{sqrt{2pi}}{2} + frac{sqrt{2pi}}{2}i$$
And it coincides with the final answer!
My problem is, suppose $L$ is a ray starting from $0$ and has an angle $phi$ with the $x$-axis, and let $phiin(0,2pi)$.
I want to argue that (maybe it is incorrect though)
$$Gamma(z)=int_{L}t^{z-1}e^{-t} dt$$
I firstly know that it converges when $Re(z)>0$. Choose a contour like sector, let $L_1={z=x+iy:y=0, r<x<R}$, $L_2={z=Re^{itheta}:0<theta<phi}$, $L_3={z=xe^{iphi}:r<x<R}$ and $L_4={z=re^{itheta}:0<theta<phi}$, where $r<R$ and the contour is counterclockwise. By Cauchy theorem we have the contour integral should be $0$.
Easy to see that (let $z=x+iy$)
$$
lim_{rto0+, Rto+infty}int_{L_1}t^{z-1}e^{-t} dt=Gamma(z)
$$
$$
|int_{L_4}t^{z-1}e^{-t} dt|=|int_{phi}^{0} e^{-re^{itheta}} (re^{itheta})^{z-1}ire^{itheta} dtheta| leq int_{0}^{phi} e^{-rcostheta} |r^{z}e^{itheta(z-1)}| dtheta=int_{0}^{phi} e^{-rcostheta} r^{x}e^{-theta y} dtheta to 0, r to 0+
$$
But when considering $L_2$:
$$
|int_{L_2}t^{z-1}e^{-t} dt|leqint_{0}^{phi} e^{-Rcostheta} R^{x}e^{-theta y} dtheta
$$
when for example, $frac{3pi}{2}>phi>frac{pi}{2}$, we have $costheta<0$ and I failed to prove the above integral goes to zero when $Rto +infty$.
Is my usage of Gamma function to compute the original integral a coincidence to get the correct result, or there is a way to prove my argument?
Thank you so much!
complex-analysis gamma-function
complex-analysis gamma-function
edited Jan 1 at 8:13
Edward Wang
asked Jan 1 at 7:52


Edward WangEdward Wang
823512
823512
1
$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07
add a comment |
1
$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07
1
1
$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07
$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?
Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058273%2fcompute-int-0-infty-frac-sin-x-sqrtx-dx-using-gamma-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?
Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$
$endgroup$
add a comment |
$begingroup$
There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?
Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$
$endgroup$
add a comment |
$begingroup$
There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?
Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$
$endgroup$
There's a bit of a problem because square roots are ambiguous. While $int_0^infty x^{-1/2}exp -zxdx=sqrt{pi}z^{-1/2}$ is easily proven on $Bbb R^+$, if you try an analytic continuation (whether your proof approach is as detailed as you've attempted or otherwise) the intended theorem isn't even clear. Which kind of $z^{-1/2}$ should be used for the desired case $z=-i$?
Funnily enough, there's a completely different approach using the gamma function: $$int_0^inftyfrac{sin x dx}{sqrt{x}}=frac{1}{sqrt{pi}}Imint_0^infty dxint_0^infty y^{-1/2}exp -x(y-i)dy=frac{1}{sqrt{pi}}Imint_0^infty dyfrac{y^{-1/2}}{y-i}\=frac{1}{sqrt{pi}}int_0^inftyfrac{y^{-1/2}dy}{y^2+1}=frac{1}{sqrt{pi}}int_0^{pi/2}tan^{-1/2}theta dtheta\=frac{1}{2sqrt{pi}}operatorname{B}left(frac{1}{4},,frac{3}{4}right)=frac{1}{2sqrt{pi}}Gammaleft(frac{1}{4}right)Gammaleft(frac{3}{4}right)=frac{sqrt{pi}}{2}cscfrac{pi}{4}=sqrt{frac{pi}{2}}.$$
answered Jan 1 at 8:51
J.G.J.G.
23.4k22237
23.4k22237
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058273%2fcompute-int-0-infty-frac-sin-x-sqrtx-dx-using-gamma-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$int_0^infty sin y^2dy=int_0^inftysin(y^2)dyneint_0^inftysin^2ydy$.
$endgroup$
– Kemono Chen
Jan 1 at 8:07