Determining the infinite sum $sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}$












0












$begingroup$


I have to determine the following sum:



begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}



And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 18:23
















0












$begingroup$


I have to determine the following sum:



begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}



And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 18:23














0












0








0





$begingroup$


I have to determine the following sum:



begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}



And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?










share|cite|improve this question









$endgroup$




I have to determine the following sum:



begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}



And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?







sequences-and-series summation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 7 at 18:22









ViktorViktor

1389




1389








  • 1




    $begingroup$
    en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 18:23














  • 1




    $begingroup$
    en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 18:23








1




1




$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23




$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23










4 Answers
4






active

oldest

votes


















5












$begingroup$

Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$



$$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$



Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks i now understand why this is the case!
    $endgroup$
    – Viktor
    Jan 7 at 18:30



















1












$begingroup$

Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$


    $$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$




    Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      As others have shown,
      $$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
      but we can generalize this.



      $$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
      $$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
      $$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
      Also
      $$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065308%2fdetermining-the-infinite-sum-sum-limits-n-0-infty-frac-1n2n1%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$



        $$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$



        Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
        so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          Thanks i now understand why this is the case!
          $endgroup$
          – Viktor
          Jan 7 at 18:30
















        5












        $begingroup$

        Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$



        $$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$



        Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
        so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          Thanks i now understand why this is the case!
          $endgroup$
          – Viktor
          Jan 7 at 18:30














        5












        5








        5





        $begingroup$

        Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$



        $$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$



        Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
        so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$






        share|cite|improve this answer









        $endgroup$



        Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$



        $$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$



        Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
        so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 7 at 18:28









        aledenaleden

        2,032511




        2,032511












        • $begingroup$
          Thanks i now understand why this is the case!
          $endgroup$
          – Viktor
          Jan 7 at 18:30


















        • $begingroup$
          Thanks i now understand why this is the case!
          $endgroup$
          – Viktor
          Jan 7 at 18:30
















        $begingroup$
        Thanks i now understand why this is the case!
        $endgroup$
        – Viktor
        Jan 7 at 18:30




        $begingroup$
        Thanks i now understand why this is the case!
        $endgroup$
        – Viktor
        Jan 7 at 18:30











        1












        $begingroup$

        Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.






            share|cite|improve this answer









            $endgroup$



            Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 7 at 18:30









            MindlackMindlack

            3,37717




            3,37717























                1












                $begingroup$


                $$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$




                Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$


                  $$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$




                  Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$


                    $$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$




                    Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$






                    share|cite|improve this answer









                    $endgroup$




                    $$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$




                    Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 7 at 18:49









                    cansomeonehelpmeoutcansomeonehelpmeout

                    6,8273835




                    6,8273835























                        1












                        $begingroup$

                        As others have shown,
                        $$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
                        but we can generalize this.



                        $$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
                        $$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
                        $$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
                        Also
                        $$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          As others have shown,
                          $$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
                          but we can generalize this.



                          $$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
                          $$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
                          $$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
                          Also
                          $$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            As others have shown,
                            $$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
                            but we can generalize this.



                            $$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
                            $$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
                            $$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
                            Also
                            $$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$






                            share|cite|improve this answer









                            $endgroup$



                            As others have shown,
                            $$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
                            but we can generalize this.



                            $$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
                            $$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
                            $$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
                            Also
                            $$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 7 at 19:04









                            clathratusclathratus

                            3,952334




                            3,952334






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065308%2fdetermining-the-infinite-sum-sum-limits-n-0-infty-frac-1n2n1%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith