Determining the infinite sum $sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}$
$begingroup$
I have to determine the following sum:
begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}
And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?
sequences-and-series summation
$endgroup$
add a comment |
$begingroup$
I have to determine the following sum:
begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}
And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?
sequences-and-series summation
$endgroup$
1
$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23
add a comment |
$begingroup$
I have to determine the following sum:
begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}
And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?
sequences-and-series summation
$endgroup$
I have to determine the following sum:
begin{equation}
sumlimits_{n=0}^{infty}frac{(-1)^n}{2n+1}
end{equation}
And i've tried lot's of ways to determine it, but i couldn't get a result so I figured I would look on WolframAlpha to see what the result has to be so i could maybe know what to do next by that. But apparently the result is $frac{pi}{4}$ and i don't know how I could possibly get to pi.
Does anyone have any suggestions about how to tackle this?
sequences-and-series summation
sequences-and-series summation
asked Jan 7 at 18:22
ViktorViktor
1389
1389
1
$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23
add a comment |
1
$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23
1
1
$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23
$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$
$$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$
Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$
$endgroup$
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
add a comment |
$begingroup$
Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.
$endgroup$
add a comment |
$begingroup$
$$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$
Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$
$endgroup$
add a comment |
$begingroup$
As others have shown,
$$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
but we can generalize this.
$$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
$$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
$$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
Also
$$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065308%2fdetermining-the-infinite-sum-sum-limits-n-0-infty-frac-1n2n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$
$$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$
Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$
$endgroup$
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
add a comment |
$begingroup$
Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$
$$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$
Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$
$endgroup$
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
add a comment |
$begingroup$
Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$
$$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$
Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$
$endgroup$
Observe $$frac{1}{1-x}=sum_{n=0}^infty x^n$$
$$frac{1}{1+x^2}=sum_{n=0}^infty (-1)^nx^{2n}$$
Integrating both sides from $0$ to $1$ we get $$arctan(x)|_0^1=sum_{n=0}^infty frac{(-1)^n x^{2n+1}}{2n+1}|_0^1$$
so $$arctan(1)=frac{pi}{4}=sum_{n=0}^infty frac{(-1)^n}{2n+1}$$
answered Jan 7 at 18:28
aledenaleden
2,032511
2,032511
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
add a comment |
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
$begingroup$
Thanks i now understand why this is the case!
$endgroup$
– Viktor
Jan 7 at 18:30
add a comment |
$begingroup$
Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.
$endgroup$
add a comment |
$begingroup$
Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.
$endgroup$
add a comment |
$begingroup$
Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.
$endgroup$
Hint: $sum_{k=0}^n{frac{(-1)^k}{2k+1}} = int_0^1{frac{1}{1+x^2}} - int_0^1{frac{(-x^2)^{n+1}}{1+x^2}}$.
answered Jan 7 at 18:30
MindlackMindlack
3,37717
3,37717
add a comment |
add a comment |
$begingroup$
$$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$
Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$
$endgroup$
add a comment |
$begingroup$
$$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$
Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$
$endgroup$
add a comment |
$begingroup$
$$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$
Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$
$endgroup$
$$frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}$$ This is because, let $y=tan^{-1}(x)$, so that $$x=tan(y)tag{1}$$ Differentiating both sides of $(1)$ yields $$1=frac{1}{cos^2(y)}frac{dy}{dx}\ 1=frac{cos^2(y)+sin^2(y)}{cos^2(y)}frac{dy}{dx}\\1=left(1+x^2right)frac{dy}{dx}$$ $$boxed{frac{d(tan^{-1}(x))}{dx}=frac{1}{1+x^2}}tag{2}$$
Now, it is known that $$frac{1}{1-x}=sum_{n=0}^{infty}x^n$$ for $|x|<1$, replacing $x$ with $-x^2$ we get $$frac{1}{1+x^2}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{3}$$ Combining $(2)$ and $(3)$ we see that $$frac{d(tan^{-1}(x))}{dx}=sum_{n=0}^{infty}(-1)^nx^{2n}tag{4}$$ Taking the integral from $0$ to $1$ of $(4)$ yields $$int_0^1frac{d(tan^{-1}(x))}{dx}=tan^{-1}(1)-tan^{-1}(0)=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}\boxed{frac{pi}{4}=sum_{n=0}^{infty}frac{(-1)^n}{2n+1}}$$
answered Jan 7 at 18:49


cansomeonehelpmeoutcansomeonehelpmeout
6,8273835
6,8273835
add a comment |
add a comment |
$begingroup$
As others have shown,
$$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
but we can generalize this.
$$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
$$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
$$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
Also
$$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$
$endgroup$
add a comment |
$begingroup$
As others have shown,
$$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
but we can generalize this.
$$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
$$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
$$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
Also
$$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$
$endgroup$
add a comment |
$begingroup$
As others have shown,
$$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
but we can generalize this.
$$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
$$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
$$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
Also
$$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$
$endgroup$
As others have shown,
$$sum_{ngeq0}frac{(-1)^n}{2n+1}=int_0^1frac{mathrm dx}{1+x^2}$$
but we can generalize this.
$$frac1{1+x}=sum_{ngeq0}(-1)^nx^n$$
$$frac1{1+x^a}=sum_{ngeq0}(-1)^nx^{an}$$
$$int_0^1frac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^n}{an+1}$$
Also
$$int_0^bfrac{mathrm dx}{1+x^a}=sum_{ngeq0}frac{(-1)^nb^{an+1}}{an+1}$$
answered Jan 7 at 19:04


clathratusclathratus
3,952334
3,952334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065308%2fdetermining-the-infinite-sum-sum-limits-n-0-infty-frac-1n2n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
$endgroup$
– Lord Shark the Unknown
Jan 7 at 18:23