Logarithm rules i.e. $-1/2 cdot log_2(2/9)$ to $2/9cdot log_2(2)$?
$begingroup$
I'm struggling to understand the flow of calculation as shown in the picture below.
It would be really nice if someone can explain how does one reach from step one to step two and which Logarithm rules were applied here to reach the second step from the first one.
Thank you! :)
algebra-precalculus logarithms
$endgroup$
add a comment |
$begingroup$
I'm struggling to understand the flow of calculation as shown in the picture below.
It would be really nice if someone can explain how does one reach from step one to step two and which Logarithm rules were applied here to reach the second step from the first one.
Thank you! :)
algebra-precalculus logarithms
$endgroup$
2
$begingroup$
While the other substitutions are clear, the replacement you emphazized in the title does not make much sense to me. I mean clearly $-frac{1}{2} log_2 left(frac{2}{9}right) neq frac{2}{9}log_2 2 = frac{2]{9}$.
$endgroup$
– Matteo
Jan 7 at 20:46
3
$begingroup$
The substitution isn’t correct.
$endgroup$
– KM101
Jan 7 at 20:48
add a comment |
$begingroup$
I'm struggling to understand the flow of calculation as shown in the picture below.
It would be really nice if someone can explain how does one reach from step one to step two and which Logarithm rules were applied here to reach the second step from the first one.
Thank you! :)
algebra-precalculus logarithms
$endgroup$
I'm struggling to understand the flow of calculation as shown in the picture below.
It would be really nice if someone can explain how does one reach from step one to step two and which Logarithm rules were applied here to reach the second step from the first one.
Thank you! :)
algebra-precalculus logarithms
algebra-precalculus logarithms
edited Jan 7 at 21:21
callculus
17.9k31427
17.9k31427
asked Jan 7 at 20:28
Giga2001Giga2001
103
103
2
$begingroup$
While the other substitutions are clear, the replacement you emphazized in the title does not make much sense to me. I mean clearly $-frac{1}{2} log_2 left(frac{2}{9}right) neq frac{2}{9}log_2 2 = frac{2]{9}$.
$endgroup$
– Matteo
Jan 7 at 20:46
3
$begingroup$
The substitution isn’t correct.
$endgroup$
– KM101
Jan 7 at 20:48
add a comment |
2
$begingroup$
While the other substitutions are clear, the replacement you emphazized in the title does not make much sense to me. I mean clearly $-frac{1}{2} log_2 left(frac{2}{9}right) neq frac{2}{9}log_2 2 = frac{2]{9}$.
$endgroup$
– Matteo
Jan 7 at 20:46
3
$begingroup$
The substitution isn’t correct.
$endgroup$
– KM101
Jan 7 at 20:48
2
2
$begingroup$
While the other substitutions are clear, the replacement you emphazized in the title does not make much sense to me. I mean clearly $-frac{1}{2} log_2 left(frac{2}{9}right) neq frac{2}{9}log_2 2 = frac{2]{9}$.
$endgroup$
– Matteo
Jan 7 at 20:46
$begingroup$
While the other substitutions are clear, the replacement you emphazized in the title does not make much sense to me. I mean clearly $-frac{1}{2} log_2 left(frac{2}{9}right) neq frac{2}{9}log_2 2 = frac{2]{9}$.
$endgroup$
– Matteo
Jan 7 at 20:46
3
3
$begingroup$
The substitution isn’t correct.
$endgroup$
– KM101
Jan 7 at 20:48
$begingroup$
The substitution isn’t correct.
$endgroup$
– KM101
Jan 7 at 20:48
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I'll give you the steps, but you should probably familiarize yourself with the (very simple) rules: https://www.chilimath.com/lessons/advanced-algebra/logarithm-rules/.
begin{align}
&1 - frac{-frac{1}{3}log_2left(frac{1}{3}right) - frac{1}{2}log_2left(frac{2}{9}right)}{-sumlimits_{s = 1}^9 frac{1}{9}log_2left(frac{1}{9}right)}\\
&textrm{Denominator: You're just adding the same thing 9 times}\\
= &1 - frac{frac{1}{3}log_2left(left(frac{1}{3}right)^{-1}right) + frac{1}{2}log_2left(left(frac{2}{9}right)^{-1}right)}{-9 cdot frac{1}{9}log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{-log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(left(frac{1}{9}right)^{-1}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}left(log_2left(9right) - log_2left(2right)right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(9right) - frac{1}{2}}{log_2left(9right)}\\
end{align}
For this to be equal to the second step, you'd need $frac{1}{2}log_2left(9right) - frac{1}{2} = frac{2}{9}log_2left(2right) = frac{2}{9}$ to be true. It's not: $frac{1}{2}log_2left(9right) - frac{1}{2} approx 1.1$ and $frac{2}{9} approx 0.2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065459%2flogarithm-rules-i-e-1-2-cdot-log-22-9-to-2-9-cdot-log-22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I'll give you the steps, but you should probably familiarize yourself with the (very simple) rules: https://www.chilimath.com/lessons/advanced-algebra/logarithm-rules/.
begin{align}
&1 - frac{-frac{1}{3}log_2left(frac{1}{3}right) - frac{1}{2}log_2left(frac{2}{9}right)}{-sumlimits_{s = 1}^9 frac{1}{9}log_2left(frac{1}{9}right)}\\
&textrm{Denominator: You're just adding the same thing 9 times}\\
= &1 - frac{frac{1}{3}log_2left(left(frac{1}{3}right)^{-1}right) + frac{1}{2}log_2left(left(frac{2}{9}right)^{-1}right)}{-9 cdot frac{1}{9}log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{-log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(left(frac{1}{9}right)^{-1}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}left(log_2left(9right) - log_2left(2right)right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(9right) - frac{1}{2}}{log_2left(9right)}\\
end{align}
For this to be equal to the second step, you'd need $frac{1}{2}log_2left(9right) - frac{1}{2} = frac{2}{9}log_2left(2right) = frac{2}{9}$ to be true. It's not: $frac{1}{2}log_2left(9right) - frac{1}{2} approx 1.1$ and $frac{2}{9} approx 0.2$.
$endgroup$
add a comment |
$begingroup$
I'll give you the steps, but you should probably familiarize yourself with the (very simple) rules: https://www.chilimath.com/lessons/advanced-algebra/logarithm-rules/.
begin{align}
&1 - frac{-frac{1}{3}log_2left(frac{1}{3}right) - frac{1}{2}log_2left(frac{2}{9}right)}{-sumlimits_{s = 1}^9 frac{1}{9}log_2left(frac{1}{9}right)}\\
&textrm{Denominator: You're just adding the same thing 9 times}\\
= &1 - frac{frac{1}{3}log_2left(left(frac{1}{3}right)^{-1}right) + frac{1}{2}log_2left(left(frac{2}{9}right)^{-1}right)}{-9 cdot frac{1}{9}log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{-log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(left(frac{1}{9}right)^{-1}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}left(log_2left(9right) - log_2left(2right)right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(9right) - frac{1}{2}}{log_2left(9right)}\\
end{align}
For this to be equal to the second step, you'd need $frac{1}{2}log_2left(9right) - frac{1}{2} = frac{2}{9}log_2left(2right) = frac{2}{9}$ to be true. It's not: $frac{1}{2}log_2left(9right) - frac{1}{2} approx 1.1$ and $frac{2}{9} approx 0.2$.
$endgroup$
add a comment |
$begingroup$
I'll give you the steps, but you should probably familiarize yourself with the (very simple) rules: https://www.chilimath.com/lessons/advanced-algebra/logarithm-rules/.
begin{align}
&1 - frac{-frac{1}{3}log_2left(frac{1}{3}right) - frac{1}{2}log_2left(frac{2}{9}right)}{-sumlimits_{s = 1}^9 frac{1}{9}log_2left(frac{1}{9}right)}\\
&textrm{Denominator: You're just adding the same thing 9 times}\\
= &1 - frac{frac{1}{3}log_2left(left(frac{1}{3}right)^{-1}right) + frac{1}{2}log_2left(left(frac{2}{9}right)^{-1}right)}{-9 cdot frac{1}{9}log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{-log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(left(frac{1}{9}right)^{-1}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}left(log_2left(9right) - log_2left(2right)right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(9right) - frac{1}{2}}{log_2left(9right)}\\
end{align}
For this to be equal to the second step, you'd need $frac{1}{2}log_2left(9right) - frac{1}{2} = frac{2}{9}log_2left(2right) = frac{2}{9}$ to be true. It's not: $frac{1}{2}log_2left(9right) - frac{1}{2} approx 1.1$ and $frac{2}{9} approx 0.2$.
$endgroup$
I'll give you the steps, but you should probably familiarize yourself with the (very simple) rules: https://www.chilimath.com/lessons/advanced-algebra/logarithm-rules/.
begin{align}
&1 - frac{-frac{1}{3}log_2left(frac{1}{3}right) - frac{1}{2}log_2left(frac{2}{9}right)}{-sumlimits_{s = 1}^9 frac{1}{9}log_2left(frac{1}{9}right)}\\
&textrm{Denominator: You're just adding the same thing 9 times}\\
= &1 - frac{frac{1}{3}log_2left(left(frac{1}{3}right)^{-1}right) + frac{1}{2}log_2left(left(frac{2}{9}right)^{-1}right)}{-9 cdot frac{1}{9}log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{-log_2left(frac{1}{9}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(left(frac{1}{9}right)^{-1}right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(frac{9}{2}right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}left(log_2left(9right) - log_2left(2right)right)}{log_2left(9right)}\\
= &1 - frac{frac{1}{3}log_2left(3right) + frac{1}{2}log_2left(9right) - frac{1}{2}}{log_2left(9right)}\\
end{align}
For this to be equal to the second step, you'd need $frac{1}{2}log_2left(9right) - frac{1}{2} = frac{2}{9}log_2left(2right) = frac{2}{9}$ to be true. It's not: $frac{1}{2}log_2left(9right) - frac{1}{2} approx 1.1$ and $frac{2}{9} approx 0.2$.
answered Jan 12 at 3:46
PiKindOfGuyPiKindOfGuy
18611
18611
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065459%2flogarithm-rules-i-e-1-2-cdot-log-22-9-to-2-9-cdot-log-22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
While the other substitutions are clear, the replacement you emphazized in the title does not make much sense to me. I mean clearly $-frac{1}{2} log_2 left(frac{2}{9}right) neq frac{2}{9}log_2 2 = frac{2]{9}$.
$endgroup$
– Matteo
Jan 7 at 20:46
3
$begingroup$
The substitution isn’t correct.
$endgroup$
– KM101
Jan 7 at 20:48