holomorphy domain
$begingroup$
could someone please help me with this exercise?
Let $$f_n=frac{logleft(z-frac{1}{n}right)}{log^frac{3}{2}(n)left(z^2+nright)}$$
Where $log(z)$ is the natural branch of the function logarithm.
Find the holomorphy domain of $f(z)=sumlimits_{n=2}^{infty} f_n$.
I tried to use the fact that a series of holomorphic functions witch converge nomally to a function $f$ implies the holomorphy of $f$ but i can't find a majoration.
I also would be happy to recive other approaches to this kind of exercises.
complex-analysis
$endgroup$
add a comment |
$begingroup$
could someone please help me with this exercise?
Let $$f_n=frac{logleft(z-frac{1}{n}right)}{log^frac{3}{2}(n)left(z^2+nright)}$$
Where $log(z)$ is the natural branch of the function logarithm.
Find the holomorphy domain of $f(z)=sumlimits_{n=2}^{infty} f_n$.
I tried to use the fact that a series of holomorphic functions witch converge nomally to a function $f$ implies the holomorphy of $f$ but i can't find a majoration.
I also would be happy to recive other approaches to this kind of exercises.
complex-analysis
$endgroup$
add a comment |
$begingroup$
could someone please help me with this exercise?
Let $$f_n=frac{logleft(z-frac{1}{n}right)}{log^frac{3}{2}(n)left(z^2+nright)}$$
Where $log(z)$ is the natural branch of the function logarithm.
Find the holomorphy domain of $f(z)=sumlimits_{n=2}^{infty} f_n$.
I tried to use the fact that a series of holomorphic functions witch converge nomally to a function $f$ implies the holomorphy of $f$ but i can't find a majoration.
I also would be happy to recive other approaches to this kind of exercises.
complex-analysis
$endgroup$
could someone please help me with this exercise?
Let $$f_n=frac{logleft(z-frac{1}{n}right)}{log^frac{3}{2}(n)left(z^2+nright)}$$
Where $log(z)$ is the natural branch of the function logarithm.
Find the holomorphy domain of $f(z)=sumlimits_{n=2}^{infty} f_n$.
I tried to use the fact that a series of holomorphic functions witch converge nomally to a function $f$ implies the holomorphy of $f$ but i can't find a majoration.
I also would be happy to recive other approaches to this kind of exercises.
complex-analysis
complex-analysis
edited Jan 7 at 21:26
Fabio
1079
1079
asked Jan 7 at 20:06
Elia OrsiElia Orsi
13
13
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: For each $n$ determine where $f_n$ is well defined. This will be a set of the form $mathbb Csetminus E_n.$ The set where $sum f_n$ makes sense can be no larger than $mathbb Csetminus (cup ,E_n).$
$endgroup$
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065442%2fholomorphy-domain%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: For each $n$ determine where $f_n$ is well defined. This will be a set of the form $mathbb Csetminus E_n.$ The set where $sum f_n$ makes sense can be no larger than $mathbb Csetminus (cup ,E_n).$
$endgroup$
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
add a comment |
$begingroup$
Hint: For each $n$ determine where $f_n$ is well defined. This will be a set of the form $mathbb Csetminus E_n.$ The set where $sum f_n$ makes sense can be no larger than $mathbb Csetminus (cup ,E_n).$
$endgroup$
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
add a comment |
$begingroup$
Hint: For each $n$ determine where $f_n$ is well defined. This will be a set of the form $mathbb Csetminus E_n.$ The set where $sum f_n$ makes sense can be no larger than $mathbb Csetminus (cup ,E_n).$
$endgroup$
Hint: For each $n$ determine where $f_n$ is well defined. This will be a set of the form $mathbb Csetminus E_n.$ The set where $sum f_n$ makes sense can be no larger than $mathbb Csetminus (cup ,E_n).$
answered Jan 7 at 21:07
zhw.zhw.
72.4k43175
72.4k43175
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
add a comment |
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
Thank you, $E_n$ should be {$zin mathbb{C}:zneq isqrt{n},$ $zneq-isqrt{n}$ } $cup$ $ ${$zin mathbb{C}: Re(z)leq frac{1}{n}$ $and $ $ Img(z)=0$}.
$endgroup$
– Elia Orsi
Jan 7 at 22:10
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
$begingroup$
I would write $E_n = {isqrt n,-isqrt n}cup (-infty,1/n].$
$endgroup$
– zhw.
Jan 7 at 23:26
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065442%2fholomorphy-domain%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown