How to count and getting the sum of value for unique Ids in a Spark Dataframe?
I have the following Dataframe and i am looking to aggregate by ids and also sum the 'value' column for each unique id:
import org.apache.spark.sql.functions._
import spark.implicits._
// some data...
val df = Seq(
(1, 2),
(1, 4),
(1, 1),
(2, 2),
(2, 2),
(3, 2),
(3, 1),
(3, 1)
).toDF("id","value")
df.show()
gives the following:
+---+-----+
| id|value|
+---+-----+
| 1| 2|
| 1| 4|
| 1| 1|
| 2| 2|
| 2| 2|
| 3| 2|
| 3| 1|
| 3| 1|
+---+-----+
Using the count function I know I can count the unique ids:
df.select("id").groupBy($"id").count.orderBy($"id".asc).show()
+---+-----+
| id|count|
+---+-----+
| 1| 3|
| 2| 2|
| 3| 3|
+---+-----+
but I also want to sum (or get the average of) the values for each of the unique ids. So the resulting table should be as follows:
+---+-----+----------+
| id|count|valueCount|
+---+-----+----------+
| 1| 3| 7|
| 2| 2| 4|
| 3| 3| 4|
+---+-----+----------+
Is there a way to do this programatically?
apache-spark dataframe
add a comment |
I have the following Dataframe and i am looking to aggregate by ids and also sum the 'value' column for each unique id:
import org.apache.spark.sql.functions._
import spark.implicits._
// some data...
val df = Seq(
(1, 2),
(1, 4),
(1, 1),
(2, 2),
(2, 2),
(3, 2),
(3, 1),
(3, 1)
).toDF("id","value")
df.show()
gives the following:
+---+-----+
| id|value|
+---+-----+
| 1| 2|
| 1| 4|
| 1| 1|
| 2| 2|
| 2| 2|
| 3| 2|
| 3| 1|
| 3| 1|
+---+-----+
Using the count function I know I can count the unique ids:
df.select("id").groupBy($"id").count.orderBy($"id".asc).show()
+---+-----+
| id|count|
+---+-----+
| 1| 3|
| 2| 2|
| 3| 3|
+---+-----+
but I also want to sum (or get the average of) the values for each of the unique ids. So the resulting table should be as follows:
+---+-----+----------+
| id|count|valueCount|
+---+-----+----------+
| 1| 3| 7|
| 2| 2| 4|
| 3| 3| 4|
+---+-----+----------+
Is there a way to do this programatically?
apache-spark dataframe
add a comment |
I have the following Dataframe and i am looking to aggregate by ids and also sum the 'value' column for each unique id:
import org.apache.spark.sql.functions._
import spark.implicits._
// some data...
val df = Seq(
(1, 2),
(1, 4),
(1, 1),
(2, 2),
(2, 2),
(3, 2),
(3, 1),
(3, 1)
).toDF("id","value")
df.show()
gives the following:
+---+-----+
| id|value|
+---+-----+
| 1| 2|
| 1| 4|
| 1| 1|
| 2| 2|
| 2| 2|
| 3| 2|
| 3| 1|
| 3| 1|
+---+-----+
Using the count function I know I can count the unique ids:
df.select("id").groupBy($"id").count.orderBy($"id".asc).show()
+---+-----+
| id|count|
+---+-----+
| 1| 3|
| 2| 2|
| 3| 3|
+---+-----+
but I also want to sum (or get the average of) the values for each of the unique ids. So the resulting table should be as follows:
+---+-----+----------+
| id|count|valueCount|
+---+-----+----------+
| 1| 3| 7|
| 2| 2| 4|
| 3| 3| 4|
+---+-----+----------+
Is there a way to do this programatically?
apache-spark dataframe
I have the following Dataframe and i am looking to aggregate by ids and also sum the 'value' column for each unique id:
import org.apache.spark.sql.functions._
import spark.implicits._
// some data...
val df = Seq(
(1, 2),
(1, 4),
(1, 1),
(2, 2),
(2, 2),
(3, 2),
(3, 1),
(3, 1)
).toDF("id","value")
df.show()
gives the following:
+---+-----+
| id|value|
+---+-----+
| 1| 2|
| 1| 4|
| 1| 1|
| 2| 2|
| 2| 2|
| 3| 2|
| 3| 1|
| 3| 1|
+---+-----+
Using the count function I know I can count the unique ids:
df.select("id").groupBy($"id").count.orderBy($"id".asc).show()
+---+-----+
| id|count|
+---+-----+
| 1| 3|
| 2| 2|
| 3| 3|
+---+-----+
but I also want to sum (or get the average of) the values for each of the unique ids. So the resulting table should be as follows:
+---+-----+----------+
| id|count|valueCount|
+---+-----+----------+
| 1| 3| 7|
| 2| 2| 4|
| 3| 3| 4|
+---+-----+----------+
Is there a way to do this programatically?
apache-spark dataframe
apache-spark dataframe
edited Nov 20 '18 at 16:11
user6910411
33.4k97499
33.4k97499
asked Nov 20 '18 at 13:14


Eoin LaneEoin Lane
1791214
1791214
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
The way to do it is to use aggregate functions. Sparks comes with a number of predefined ones (average, sum, count, first, collect list, collect set, min, max, ...), so you can always, on your example, do it like this :
df.groupBy("id").agg(
count("id").as("countOfIds"),
sum("id").as("sumOfIds"),
avg("id").as("avgOfIds")
).show
+---+----------+--------+--------+
| id|countOfIds|sumOfIds|avgOfIds|
+---+----------+--------+--------+
| 1| 3| 3| 1.0|
| 3| 3| 9| 3.0|
| 2| 2| 4| 2.0|
+---+----------+--------+--------+
You can view the defined functions inside the sql.function package documentation, by looking the ones defined as "Aggregate functions". All of those have a SQL syntax equivalent if you are using the SQL oriented syntax.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53393820%2fhow-to-count-and-getting-the-sum-of-value-for-unique-ids-in-a-spark-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The way to do it is to use aggregate functions. Sparks comes with a number of predefined ones (average, sum, count, first, collect list, collect set, min, max, ...), so you can always, on your example, do it like this :
df.groupBy("id").agg(
count("id").as("countOfIds"),
sum("id").as("sumOfIds"),
avg("id").as("avgOfIds")
).show
+---+----------+--------+--------+
| id|countOfIds|sumOfIds|avgOfIds|
+---+----------+--------+--------+
| 1| 3| 3| 1.0|
| 3| 3| 9| 3.0|
| 2| 2| 4| 2.0|
+---+----------+--------+--------+
You can view the defined functions inside the sql.function package documentation, by looking the ones defined as "Aggregate functions". All of those have a SQL syntax equivalent if you are using the SQL oriented syntax.
add a comment |
The way to do it is to use aggregate functions. Sparks comes with a number of predefined ones (average, sum, count, first, collect list, collect set, min, max, ...), so you can always, on your example, do it like this :
df.groupBy("id").agg(
count("id").as("countOfIds"),
sum("id").as("sumOfIds"),
avg("id").as("avgOfIds")
).show
+---+----------+--------+--------+
| id|countOfIds|sumOfIds|avgOfIds|
+---+----------+--------+--------+
| 1| 3| 3| 1.0|
| 3| 3| 9| 3.0|
| 2| 2| 4| 2.0|
+---+----------+--------+--------+
You can view the defined functions inside the sql.function package documentation, by looking the ones defined as "Aggregate functions". All of those have a SQL syntax equivalent if you are using the SQL oriented syntax.
add a comment |
The way to do it is to use aggregate functions. Sparks comes with a number of predefined ones (average, sum, count, first, collect list, collect set, min, max, ...), so you can always, on your example, do it like this :
df.groupBy("id").agg(
count("id").as("countOfIds"),
sum("id").as("sumOfIds"),
avg("id").as("avgOfIds")
).show
+---+----------+--------+--------+
| id|countOfIds|sumOfIds|avgOfIds|
+---+----------+--------+--------+
| 1| 3| 3| 1.0|
| 3| 3| 9| 3.0|
| 2| 2| 4| 2.0|
+---+----------+--------+--------+
You can view the defined functions inside the sql.function package documentation, by looking the ones defined as "Aggregate functions". All of those have a SQL syntax equivalent if you are using the SQL oriented syntax.
The way to do it is to use aggregate functions. Sparks comes with a number of predefined ones (average, sum, count, first, collect list, collect set, min, max, ...), so you can always, on your example, do it like this :
df.groupBy("id").agg(
count("id").as("countOfIds"),
sum("id").as("sumOfIds"),
avg("id").as("avgOfIds")
).show
+---+----------+--------+--------+
| id|countOfIds|sumOfIds|avgOfIds|
+---+----------+--------+--------+
| 1| 3| 3| 1.0|
| 3| 3| 9| 3.0|
| 2| 2| 4| 2.0|
+---+----------+--------+--------+
You can view the defined functions inside the sql.function package documentation, by looking the ones defined as "Aggregate functions". All of those have a SQL syntax equivalent if you are using the SQL oriented syntax.
edited Nov 20 '18 at 14:01
answered Nov 20 '18 at 13:23
GPIGPI
5,90112035
5,90112035
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53393820%2fhow-to-count-and-getting-the-sum-of-value-for-unique-ids-in-a-spark-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown