How to prove $a_{n+1}=(1+a_n+a^2_{n-1})/3$ is a non-decreasing sequence?
$begingroup$
$$a_1=a_2=0.5$$
It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.
But how to prove it's monotone?
I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$
But couldn't prove any of the inequalities.
real-analysis sequences-and-series convergence induction monotone-functions
$endgroup$
add a comment |
$begingroup$
$$a_1=a_2=0.5$$
It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.
But how to prove it's monotone?
I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$
But couldn't prove any of the inequalities.
real-analysis sequences-and-series convergence induction monotone-functions
$endgroup$
1
$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08
add a comment |
$begingroup$
$$a_1=a_2=0.5$$
It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.
But how to prove it's monotone?
I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$
But couldn't prove any of the inequalities.
real-analysis sequences-and-series convergence induction monotone-functions
$endgroup$
$$a_1=a_2=0.5$$
It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.
But how to prove it's monotone?
I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$
But couldn't prove any of the inequalities.
real-analysis sequences-and-series convergence induction monotone-functions
real-analysis sequences-and-series convergence induction monotone-functions
edited Jan 6 at 4:17
Michael Rozenberg
98.9k1590189
98.9k1590189
asked Jan 6 at 2:41
UserUser
452312
452312
1
$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08
add a comment |
1
$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08
1
1
$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08
$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The hint.
By induction:
$$
begin{align}
a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
\&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
\&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
\&geq0
end{align}
$$
$endgroup$
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
add a comment |
$begingroup$
Following the implicit advice from previous answer to use the definition twice together with induction,
$$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
$$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
$$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$
If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063420%2fhow-to-prove-a-n1-1a-na2-n-1-3-is-a-non-decreasing-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The hint.
By induction:
$$
begin{align}
a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
\&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
\&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
\&geq0
end{align}
$$
$endgroup$
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
add a comment |
$begingroup$
The hint.
By induction:
$$
begin{align}
a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
\&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
\&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
\&geq0
end{align}
$$
$endgroup$
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
add a comment |
$begingroup$
The hint.
By induction:
$$
begin{align}
a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
\&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
\&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
\&geq0
end{align}
$$
$endgroup$
The hint.
By induction:
$$
begin{align}
a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
\&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
\&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
\&geq0
end{align}
$$
edited Jan 7 at 12:34
dvb
1337
1337
answered Jan 6 at 3:13
Michael RozenbergMichael Rozenberg
98.9k1590189
98.9k1590189
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
add a comment |
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
$endgroup$
– User
Jan 6 at 3:28
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
$begingroup$
@User You are welcome!
$endgroup$
– Michael Rozenberg
Jan 6 at 3:31
add a comment |
$begingroup$
Following the implicit advice from previous answer to use the definition twice together with induction,
$$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
$$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
$$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$
If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$
$endgroup$
add a comment |
$begingroup$
Following the implicit advice from previous answer to use the definition twice together with induction,
$$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
$$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
$$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$
If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$
$endgroup$
add a comment |
$begingroup$
Following the implicit advice from previous answer to use the definition twice together with induction,
$$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
$$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
$$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$
If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$
$endgroup$
Following the implicit advice from previous answer to use the definition twice together with induction,
$$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
$$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
$$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$
If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$
answered Jan 6 at 3:27
UserUser
452312
452312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063420%2fhow-to-prove-a-n1-1a-na2-n-1-3-is-a-non-decreasing-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08