How to prove $a_{n+1}=(1+a_n+a^2_{n-1})/3$ is a non-decreasing sequence?












0












$begingroup$


$$a_1=a_2=0.5$$



It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.



But how to prove it's monotone?



I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$



But couldn't prove any of the inequalities.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    @Somos not yet, will try now
    $endgroup$
    – User
    Jan 6 at 3:08


















0












$begingroup$


$$a_1=a_2=0.5$$



It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.



But how to prove it's monotone?



I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$



But couldn't prove any of the inequalities.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    @Somos not yet, will try now
    $endgroup$
    – User
    Jan 6 at 3:08
















0












0








0





$begingroup$


$$a_1=a_2=0.5$$



It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.



But how to prove it's monotone?



I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$



But couldn't prove any of the inequalities.










share|cite|improve this question











$endgroup$




$$a_1=a_2=0.5$$



It isn't hard to show that $0.5le a_nlt 1$, and that if the sequence converge, the limit is 1.



But how to prove it's monotone?



I've tried:
$$a_{n+1}-a_n=frac{1-2a_n+a^2_{n-1}}{3}ge 0$$
$$frac{1+a^2_{n-1}}{2}ge a_n$$
$$1-a_n ge a_n - a^2_{n-1}$$



But couldn't prove any of the inequalities.







real-analysis sequences-and-series convergence induction monotone-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 4:17









Michael Rozenberg

98.9k1590189




98.9k1590189










asked Jan 6 at 2:41









UserUser

452312




452312








  • 1




    $begingroup$
    @Somos not yet, will try now
    $endgroup$
    – User
    Jan 6 at 3:08
















  • 1




    $begingroup$
    @Somos not yet, will try now
    $endgroup$
    – User
    Jan 6 at 3:08










1




1




$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08






$begingroup$
@Somos not yet, will try now
$endgroup$
– User
Jan 6 at 3:08












2 Answers
2






active

oldest

votes


















5












$begingroup$

The hint.



By induction:
$$
begin{align}
a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
\&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
\&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
\&geq0
end{align}
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
    $endgroup$
    – User
    Jan 6 at 3:28










  • $begingroup$
    @User You are welcome!
    $endgroup$
    – Michael Rozenberg
    Jan 6 at 3:31



















1












$begingroup$

Following the implicit advice from previous answer to use the definition twice together with induction,



$$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
$$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
$$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$



If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063420%2fhow-to-prove-a-n1-1a-na2-n-1-3-is-a-non-decreasing-sequence%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    The hint.



    By induction:
    $$
    begin{align}
    a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
    \&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
    \&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
    \&geq0
    end{align}
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
      $endgroup$
      – User
      Jan 6 at 3:28










    • $begingroup$
      @User You are welcome!
      $endgroup$
      – Michael Rozenberg
      Jan 6 at 3:31
















    5












    $begingroup$

    The hint.



    By induction:
    $$
    begin{align}
    a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
    \&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
    \&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
    \&geq0
    end{align}
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
      $endgroup$
      – User
      Jan 6 at 3:28










    • $begingroup$
      @User You are welcome!
      $endgroup$
      – Michael Rozenberg
      Jan 6 at 3:31














    5












    5








    5





    $begingroup$

    The hint.



    By induction:
    $$
    begin{align}
    a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
    \&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
    \&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
    \&geq0
    end{align}
    $$






    share|cite|improve this answer











    $endgroup$



    The hint.



    By induction:
    $$
    begin{align}
    a_{n+1}-a_n&=frac{1-2a_n+a_{n-1}^2}{3}
    \&=frac{frac{3}{3}-2frac{1+a_{n-1}+a^2_{n-2}}{3}+frac{3a_{n-1}^2}{3}}{3}
    \&=frac{1-2a_{n-1}+a_{n-1}^2+2(a_{n-1}^2-a_{n-2}^2)}{9}
    \&geq0
    end{align}
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 7 at 12:34









    dvb

    1337




    1337










    answered Jan 6 at 3:13









    Michael RozenbergMichael Rozenberg

    98.9k1590189




    98.9k1590189












    • $begingroup$
      In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
      $endgroup$
      – User
      Jan 6 at 3:28










    • $begingroup$
      @User You are welcome!
      $endgroup$
      – Michael Rozenberg
      Jan 6 at 3:31


















    • $begingroup$
      In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
      $endgroup$
      – User
      Jan 6 at 3:28










    • $begingroup$
      @User You are welcome!
      $endgroup$
      – Michael Rozenberg
      Jan 6 at 3:31
















    $begingroup$
    In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
    $endgroup$
    – User
    Jan 6 at 3:28




    $begingroup$
    In my shame, I could not follow your arithmetic. But it gave me the right direction. Thanks!
    $endgroup$
    – User
    Jan 6 at 3:28












    $begingroup$
    @User You are welcome!
    $endgroup$
    – Michael Rozenberg
    Jan 6 at 3:31




    $begingroup$
    @User You are welcome!
    $endgroup$
    – Michael Rozenberg
    Jan 6 at 3:31











    1












    $begingroup$

    Following the implicit advice from previous answer to use the definition twice together with induction,



    $$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
    $$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
    $$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$



    If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Following the implicit advice from previous answer to use the definition twice together with induction,



      $$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
      $$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
      $$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$



      If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Following the implicit advice from previous answer to use the definition twice together with induction,



        $$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
        $$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
        $$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$



        If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$






        share|cite|improve this answer









        $endgroup$



        Following the implicit advice from previous answer to use the definition twice together with induction,



        $$a_{n+1}=(1+a_n+a^2_{n-1})/3$$
        $$a_{n}=(1+a_{n-1}+a^2_{n-2})/3$$
        $$a_{n+1}-a_{n}=(a_n-a_{n-1}+a^2_{n-1}-a^2_{n-2})/3$$



        If we assume $a_n ge a_{n-1} ge a_{n-2}$ we get $a_{n+1} ge a_n$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 6 at 3:27









        UserUser

        452312




        452312






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063420%2fhow-to-prove-a-n1-1a-na2-n-1-3-is-a-non-decreasing-sequence%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith