Integrate $e^{y-2e^y}$












3












$begingroup$


I would like to compute:



$$
int_{0}^{infty} e^{y-2e^y} dy
$$



I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.



Any suggestion is appreciated :)










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    I would like to compute:



    $$
    int_{0}^{infty} e^{y-2e^y} dy
    $$



    I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.



    Any suggestion is appreciated :)










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      I would like to compute:



      $$
      int_{0}^{infty} e^{y-2e^y} dy
      $$



      I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.



      Any suggestion is appreciated :)










      share|cite|improve this question









      $endgroup$




      I would like to compute:



      $$
      int_{0}^{infty} e^{y-2e^y} dy
      $$



      I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.



      Any suggestion is appreciated :)







      calculus integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 31 at 15:00









      superuser123superuser123

      48628




      48628






















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          Hint



          Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
          $$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            If $u=e^y$ then $du=e^y dy$, so how does that work?
            $endgroup$
            – superuser123
            Jan 31 at 15:11










          • $begingroup$
            The differential $mathrm du$ substitutes for $e^y mathrm dy$.
            $endgroup$
            – Paras Khosla
            Jan 31 at 15:13










          • $begingroup$
            oh right, thanks
            $endgroup$
            – superuser123
            Jan 31 at 15:15



















          1












          $begingroup$

          The integral itself is a u-substitution problem:



          $$
          begin{align}
          int e^{y-2e^y} dy
          &=int e^ye^{-2e^y} dy\
          &=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
          &=int e^{-2e^y}dleft(e^yright) (u=e^y)\
          &=int e^{-2u}du\
          &=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
          &=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
          &=-frac{1}{2}int e^wdw\
          &=-frac{1}{2}e^w+C\
          &=-frac{1}{2}e^{-2e^y}+C.
          end{align}
          $$



          And here's how you should do your improper integral:



          $$
          begin{align}
          int_{0}^{infty} e^{y-2e^y} dy
          &=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
          &=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
          &=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
          &=0+frac{1}{2}e^{-2}\
          &=frac{1}{2e^2}.
          end{align}
          $$






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be



            $$-frac12e^{-2e^y}.$$






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094975%2fintegrate-ey-2ey%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Hint



              Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
              $$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                If $u=e^y$ then $du=e^y dy$, so how does that work?
                $endgroup$
                – superuser123
                Jan 31 at 15:11










              • $begingroup$
                The differential $mathrm du$ substitutes for $e^y mathrm dy$.
                $endgroup$
                – Paras Khosla
                Jan 31 at 15:13










              • $begingroup$
                oh right, thanks
                $endgroup$
                – superuser123
                Jan 31 at 15:15
















              4












              $begingroup$

              Hint



              Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
              $$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                If $u=e^y$ then $du=e^y dy$, so how does that work?
                $endgroup$
                – superuser123
                Jan 31 at 15:11










              • $begingroup$
                The differential $mathrm du$ substitutes for $e^y mathrm dy$.
                $endgroup$
                – Paras Khosla
                Jan 31 at 15:13










              • $begingroup$
                oh right, thanks
                $endgroup$
                – superuser123
                Jan 31 at 15:15














              4












              4








              4





              $begingroup$

              Hint



              Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
              $$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$






              share|cite|improve this answer









              $endgroup$



              Hint



              Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
              $$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 31 at 15:07









              Paras KhoslaParas Khosla

              2,883523




              2,883523












              • $begingroup$
                If $u=e^y$ then $du=e^y dy$, so how does that work?
                $endgroup$
                – superuser123
                Jan 31 at 15:11










              • $begingroup$
                The differential $mathrm du$ substitutes for $e^y mathrm dy$.
                $endgroup$
                – Paras Khosla
                Jan 31 at 15:13










              • $begingroup$
                oh right, thanks
                $endgroup$
                – superuser123
                Jan 31 at 15:15


















              • $begingroup$
                If $u=e^y$ then $du=e^y dy$, so how does that work?
                $endgroup$
                – superuser123
                Jan 31 at 15:11










              • $begingroup$
                The differential $mathrm du$ substitutes for $e^y mathrm dy$.
                $endgroup$
                – Paras Khosla
                Jan 31 at 15:13










              • $begingroup$
                oh right, thanks
                $endgroup$
                – superuser123
                Jan 31 at 15:15
















              $begingroup$
              If $u=e^y$ then $du=e^y dy$, so how does that work?
              $endgroup$
              – superuser123
              Jan 31 at 15:11




              $begingroup$
              If $u=e^y$ then $du=e^y dy$, so how does that work?
              $endgroup$
              – superuser123
              Jan 31 at 15:11












              $begingroup$
              The differential $mathrm du$ substitutes for $e^y mathrm dy$.
              $endgroup$
              – Paras Khosla
              Jan 31 at 15:13




              $begingroup$
              The differential $mathrm du$ substitutes for $e^y mathrm dy$.
              $endgroup$
              – Paras Khosla
              Jan 31 at 15:13












              $begingroup$
              oh right, thanks
              $endgroup$
              – superuser123
              Jan 31 at 15:15




              $begingroup$
              oh right, thanks
              $endgroup$
              – superuser123
              Jan 31 at 15:15











              1












              $begingroup$

              The integral itself is a u-substitution problem:



              $$
              begin{align}
              int e^{y-2e^y} dy
              &=int e^ye^{-2e^y} dy\
              &=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
              &=int e^{-2e^y}dleft(e^yright) (u=e^y)\
              &=int e^{-2u}du\
              &=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
              &=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
              &=-frac{1}{2}int e^wdw\
              &=-frac{1}{2}e^w+C\
              &=-frac{1}{2}e^{-2e^y}+C.
              end{align}
              $$



              And here's how you should do your improper integral:



              $$
              begin{align}
              int_{0}^{infty} e^{y-2e^y} dy
              &=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
              &=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
              &=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
              &=0+frac{1}{2}e^{-2}\
              &=frac{1}{2e^2}.
              end{align}
              $$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                The integral itself is a u-substitution problem:



                $$
                begin{align}
                int e^{y-2e^y} dy
                &=int e^ye^{-2e^y} dy\
                &=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
                &=int e^{-2e^y}dleft(e^yright) (u=e^y)\
                &=int e^{-2u}du\
                &=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
                &=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
                &=-frac{1}{2}int e^wdw\
                &=-frac{1}{2}e^w+C\
                &=-frac{1}{2}e^{-2e^y}+C.
                end{align}
                $$



                And here's how you should do your improper integral:



                $$
                begin{align}
                int_{0}^{infty} e^{y-2e^y} dy
                &=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
                &=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
                &=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
                &=0+frac{1}{2}e^{-2}\
                &=frac{1}{2e^2}.
                end{align}
                $$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  The integral itself is a u-substitution problem:



                  $$
                  begin{align}
                  int e^{y-2e^y} dy
                  &=int e^ye^{-2e^y} dy\
                  &=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
                  &=int e^{-2e^y}dleft(e^yright) (u=e^y)\
                  &=int e^{-2u}du\
                  &=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
                  &=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
                  &=-frac{1}{2}int e^wdw\
                  &=-frac{1}{2}e^w+C\
                  &=-frac{1}{2}e^{-2e^y}+C.
                  end{align}
                  $$



                  And here's how you should do your improper integral:



                  $$
                  begin{align}
                  int_{0}^{infty} e^{y-2e^y} dy
                  &=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
                  &=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
                  &=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
                  &=0+frac{1}{2}e^{-2}\
                  &=frac{1}{2e^2}.
                  end{align}
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  The integral itself is a u-substitution problem:



                  $$
                  begin{align}
                  int e^{y-2e^y} dy
                  &=int e^ye^{-2e^y} dy\
                  &=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
                  &=int e^{-2e^y}dleft(e^yright) (u=e^y)\
                  &=int e^{-2u}du\
                  &=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
                  &=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
                  &=-frac{1}{2}int e^wdw\
                  &=-frac{1}{2}e^w+C\
                  &=-frac{1}{2}e^{-2e^y}+C.
                  end{align}
                  $$



                  And here's how you should do your improper integral:



                  $$
                  begin{align}
                  int_{0}^{infty} e^{y-2e^y} dy
                  &=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
                  &=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
                  &=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
                  &=0+frac{1}{2}e^{-2}\
                  &=frac{1}{2e^2}.
                  end{align}
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 31 at 15:28

























                  answered Jan 31 at 15:15









                  Michael RybkinMichael Rybkin

                  4,164422




                  4,164422























                      0












                      $begingroup$

                      Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be



                      $$-frac12e^{-2e^y}.$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be



                        $$-frac12e^{-2e^y}.$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be



                          $$-frac12e^{-2e^y}.$$






                          share|cite|improve this answer









                          $endgroup$



                          Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be



                          $$-frac12e^{-2e^y}.$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 31 at 15:48









                          Yves DaoustYves Daoust

                          132k676230




                          132k676230






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094975%2fintegrate-ey-2ey%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              How to fix TextFormField cause rebuild widget in Flutter