Integrate $e^{y-2e^y}$
$begingroup$
I would like to compute:
$$
int_{0}^{infty} e^{y-2e^y} dy
$$
I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.
Any suggestion is appreciated :)
calculus integration
$endgroup$
add a comment |
$begingroup$
I would like to compute:
$$
int_{0}^{infty} e^{y-2e^y} dy
$$
I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.
Any suggestion is appreciated :)
calculus integration
$endgroup$
add a comment |
$begingroup$
I would like to compute:
$$
int_{0}^{infty} e^{y-2e^y} dy
$$
I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.
Any suggestion is appreciated :)
calculus integration
$endgroup$
I would like to compute:
$$
int_{0}^{infty} e^{y-2e^y} dy
$$
I thought about using integration by parts but it didn't lead me anywhere. I also tried changing variables but it didn't work as well.
Any suggestion is appreciated :)
calculus integration
calculus integration
asked Jan 31 at 15:00
superuser123superuser123
48628
48628
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint
Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
$$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$
$endgroup$
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
add a comment |
$begingroup$
The integral itself is a u-substitution problem:
$$
begin{align}
int e^{y-2e^y} dy
&=int e^ye^{-2e^y} dy\
&=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
&=int e^{-2e^y}dleft(e^yright) (u=e^y)\
&=int e^{-2u}du\
&=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
&=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
&=-frac{1}{2}int e^wdw\
&=-frac{1}{2}e^w+C\
&=-frac{1}{2}e^{-2e^y}+C.
end{align}
$$
And here's how you should do your improper integral:
$$
begin{align}
int_{0}^{infty} e^{y-2e^y} dy
&=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
&=0+frac{1}{2}e^{-2}\
&=frac{1}{2e^2}.
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be
$$-frac12e^{-2e^y}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094975%2fintegrate-ey-2ey%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
$$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$
$endgroup$
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
add a comment |
$begingroup$
Hint
Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
$$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$
$endgroup$
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
add a comment |
$begingroup$
Hint
Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
$$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$
$endgroup$
Hint
Write $displaystyle e^{y-2e^y}$ as $dfrac{e^y}{e^{2e^y}}$ and let $u=e^y$. This leaves you with a nicer expression to integrate. Then it's just a matter of setting the limit for the upper bound of the integral as characteristic of improper integrals and evaluate the lower bound as the corresponding $u$ evaluated at $y=0$.
$$int_{0}^{infty} dfrac{e^y}{e^{2e^y}}mathrm dy=lim_{b to infty}int_{1}^{b} dfrac{mathrm du}{e^{2u}}$$
answered Jan 31 at 15:07


Paras KhoslaParas Khosla
2,883523
2,883523
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
add a comment |
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
If $u=e^y$ then $du=e^y dy$, so how does that work?
$endgroup$
– superuser123
Jan 31 at 15:11
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
The differential $mathrm du$ substitutes for $e^y mathrm dy$.
$endgroup$
– Paras Khosla
Jan 31 at 15:13
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
$begingroup$
oh right, thanks
$endgroup$
– superuser123
Jan 31 at 15:15
add a comment |
$begingroup$
The integral itself is a u-substitution problem:
$$
begin{align}
int e^{y-2e^y} dy
&=int e^ye^{-2e^y} dy\
&=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
&=int e^{-2e^y}dleft(e^yright) (u=e^y)\
&=int e^{-2u}du\
&=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
&=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
&=-frac{1}{2}int e^wdw\
&=-frac{1}{2}e^w+C\
&=-frac{1}{2}e^{-2e^y}+C.
end{align}
$$
And here's how you should do your improper integral:
$$
begin{align}
int_{0}^{infty} e^{y-2e^y} dy
&=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
&=0+frac{1}{2}e^{-2}\
&=frac{1}{2e^2}.
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The integral itself is a u-substitution problem:
$$
begin{align}
int e^{y-2e^y} dy
&=int e^ye^{-2e^y} dy\
&=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
&=int e^{-2e^y}dleft(e^yright) (u=e^y)\
&=int e^{-2u}du\
&=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
&=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
&=-frac{1}{2}int e^wdw\
&=-frac{1}{2}e^w+C\
&=-frac{1}{2}e^{-2e^y}+C.
end{align}
$$
And here's how you should do your improper integral:
$$
begin{align}
int_{0}^{infty} e^{y-2e^y} dy
&=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
&=0+frac{1}{2}e^{-2}\
&=frac{1}{2e^2}.
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The integral itself is a u-substitution problem:
$$
begin{align}
int e^{y-2e^y} dy
&=int e^ye^{-2e^y} dy\
&=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
&=int e^{-2e^y}dleft(e^yright) (u=e^y)\
&=int e^{-2u}du\
&=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
&=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
&=-frac{1}{2}int e^wdw\
&=-frac{1}{2}e^w+C\
&=-frac{1}{2}e^{-2e^y}+C.
end{align}
$$
And here's how you should do your improper integral:
$$
begin{align}
int_{0}^{infty} e^{y-2e^y} dy
&=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
&=0+frac{1}{2}e^{-2}\
&=frac{1}{2e^2}.
end{align}
$$
$endgroup$
The integral itself is a u-substitution problem:
$$
begin{align}
int e^{y-2e^y} dy
&=int e^ye^{-2e^y} dy\
&=int e^{-2e^y}frac{d}{dy}left(e^yright)dy\
&=int e^{-2e^y}dleft(e^yright) (u=e^y)\
&=int e^{-2u}du\
&=-frac{1}{2}int e^{-2u}frac{d}{du}left(-2uright)du\
&=-frac{1}{2}int e^{-2u}dleft(-2uright) (w=-2u)\
&=-frac{1}{2}int e^wdw\
&=-frac{1}{2}e^w+C\
&=-frac{1}{2}e^{-2e^y}+C.
end{align}
$$
And here's how you should do your improper integral:
$$
begin{align}
int_{0}^{infty} e^{y-2e^y} dy
&=lim_{b to infty}int_{0}^{b} e^{y-2e^y} dy\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^y}Big|_{0}^{b}right)\
&=lim_{b to infty}left(-frac{1}{2}e^{-2e^b}+frac{1}{2}e^{-2e^0}right)\
&=0+frac{1}{2}e^{-2}\
&=frac{1}{2e^2}.
end{align}
$$
edited Jan 31 at 15:28
answered Jan 31 at 15:15
Michael RybkinMichael Rybkin
4,164422
4,164422
add a comment |
add a comment |
$begingroup$
Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be
$$-frac12e^{-2e^y}.$$
$endgroup$
add a comment |
$begingroup$
Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be
$$-frac12e^{-2e^y}.$$
$endgroup$
add a comment |
$begingroup$
Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be
$$-frac12e^{-2e^y}.$$
$endgroup$
Rewrite the integrand as $$e^ye^{-2e^y}=(e^y)'e^{-2e^y}$$ and by the chain rule the antiderivative must be
$$-frac12e^{-2e^y}.$$
answered Jan 31 at 15:48
Yves DaoustYves Daoust
132k676230
132k676230
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094975%2fintegrate-ey-2ey%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown