Quadratic expansion of log-likelihood
$begingroup$
From the paper I'm reading:
Let $mathbf{x}$ represent the distribution of linear attenuation coefficient of an object and $[mathbf{Hx}]_m$ represents their line integral. The $m$th CT measurement, $y_m$, is a Poisson random variable with parameters
$$p_m sim Poisson(b_m e^{[mathbf{Hx}]_m}+r_m)$$
$$y_m = -log(frac{p_m}{b_m})$$
where $b_m$ is the blank scan factor and $r_m$ is the readout-noise. [Since the logarithm is bijective, the negative log-likelihood of $mathbf{y}$ given $mathbf{x}$ is equal to the one of $mathbf{p}$ given $mathbf{x}$. After removing the constants, we use the negative log-likelihood as the data-fidelity term
$$E(mathbf{Hx,y})= sum_{m=1}^M(hat{p}_m-p_m log(hat{p}_m))$$
where $hat{p}_m=b_m e^{-mathbf{Hx}}+r_m$ is the expected value of $p_m$. We then perform a quadratic approximation of $E$ with respect to $mathbf{Hx}$ around the point $-(ln(frac{hat{p}_m-r_m}{b_m}))$ using a Taylor expansion. After ignoring the higher-order terms, this yields
$$E(mathbf{Hx,y})=sum_{m=1}^M frac{1}{2} frac{(p_m-r_m)^2}{p_m}(mathbf{Hx}-log(frac{b_m}{p_m-r_m}))^2$$.
But I don't really know how to interpret the random variable $p_m$; can I just set $p_m=hat{p}_m$? That's what I've tried so far: let's assume $r_m=0$. Since $hat{p}_m=b_me^{-[mathbf{Hx}]_m}$, $-(ln(frac{hat{p}_m}{b_m}))$ becomes $[mathbf{Hx}]_m$, we can write the quadratic expansion as:
$$Q(E)=sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) \
+frac{d}{d mathbf{Hx}} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{1}{2} frac{d^2}{d mathbf{Hx}^2} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2$$
Furthermore:
$$E([mathbf{Hx}]_m,mathbf{y})=sum_{m=1}^M(b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}))$$
and
$$frac{d}{d mathbf{Hx}} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})$$
and
$$frac{d^2}{d mathbf{Hx}^2} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} (log(b_m e^{-[mathbf{Hx}]_m})+1)$$
Putting everything together and splitting the third term, I get:
$$Q(E)=sum_{m=1}^M (b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}) \
+b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})(mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (log(b_m e^{-[mathbf{Hx}]_m}))(mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2 \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2)$$
So, assuming $p_m=hat{p}_m$ the 4th term actually equals the proposed quadratic expansion from the paper; but is it correct what I did so far? And if it's right, how do I see that the first three terms vanish? Is there a trick or do I have to look closer?
Any kind of help is highly appreciated. Thank you very much. Btw. the paper I'm reading is: click (p. 1451, part B).
taylor-expansion log-likelihood
$endgroup$
add a comment |
$begingroup$
From the paper I'm reading:
Let $mathbf{x}$ represent the distribution of linear attenuation coefficient of an object and $[mathbf{Hx}]_m$ represents their line integral. The $m$th CT measurement, $y_m$, is a Poisson random variable with parameters
$$p_m sim Poisson(b_m e^{[mathbf{Hx}]_m}+r_m)$$
$$y_m = -log(frac{p_m}{b_m})$$
where $b_m$ is the blank scan factor and $r_m$ is the readout-noise. [Since the logarithm is bijective, the negative log-likelihood of $mathbf{y}$ given $mathbf{x}$ is equal to the one of $mathbf{p}$ given $mathbf{x}$. After removing the constants, we use the negative log-likelihood as the data-fidelity term
$$E(mathbf{Hx,y})= sum_{m=1}^M(hat{p}_m-p_m log(hat{p}_m))$$
where $hat{p}_m=b_m e^{-mathbf{Hx}}+r_m$ is the expected value of $p_m$. We then perform a quadratic approximation of $E$ with respect to $mathbf{Hx}$ around the point $-(ln(frac{hat{p}_m-r_m}{b_m}))$ using a Taylor expansion. After ignoring the higher-order terms, this yields
$$E(mathbf{Hx,y})=sum_{m=1}^M frac{1}{2} frac{(p_m-r_m)^2}{p_m}(mathbf{Hx}-log(frac{b_m}{p_m-r_m}))^2$$.
But I don't really know how to interpret the random variable $p_m$; can I just set $p_m=hat{p}_m$? That's what I've tried so far: let's assume $r_m=0$. Since $hat{p}_m=b_me^{-[mathbf{Hx}]_m}$, $-(ln(frac{hat{p}_m}{b_m}))$ becomes $[mathbf{Hx}]_m$, we can write the quadratic expansion as:
$$Q(E)=sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) \
+frac{d}{d mathbf{Hx}} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{1}{2} frac{d^2}{d mathbf{Hx}^2} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2$$
Furthermore:
$$E([mathbf{Hx}]_m,mathbf{y})=sum_{m=1}^M(b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}))$$
and
$$frac{d}{d mathbf{Hx}} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})$$
and
$$frac{d^2}{d mathbf{Hx}^2} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} (log(b_m e^{-[mathbf{Hx}]_m})+1)$$
Putting everything together and splitting the third term, I get:
$$Q(E)=sum_{m=1}^M (b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}) \
+b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})(mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (log(b_m e^{-[mathbf{Hx}]_m}))(mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2 \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2)$$
So, assuming $p_m=hat{p}_m$ the 4th term actually equals the proposed quadratic expansion from the paper; but is it correct what I did so far? And if it's right, how do I see that the first three terms vanish? Is there a trick or do I have to look closer?
Any kind of help is highly appreciated. Thank you very much. Btw. the paper I'm reading is: click (p. 1451, part B).
taylor-expansion log-likelihood
$endgroup$
add a comment |
$begingroup$
From the paper I'm reading:
Let $mathbf{x}$ represent the distribution of linear attenuation coefficient of an object and $[mathbf{Hx}]_m$ represents their line integral. The $m$th CT measurement, $y_m$, is a Poisson random variable with parameters
$$p_m sim Poisson(b_m e^{[mathbf{Hx}]_m}+r_m)$$
$$y_m = -log(frac{p_m}{b_m})$$
where $b_m$ is the blank scan factor and $r_m$ is the readout-noise. [Since the logarithm is bijective, the negative log-likelihood of $mathbf{y}$ given $mathbf{x}$ is equal to the one of $mathbf{p}$ given $mathbf{x}$. After removing the constants, we use the negative log-likelihood as the data-fidelity term
$$E(mathbf{Hx,y})= sum_{m=1}^M(hat{p}_m-p_m log(hat{p}_m))$$
where $hat{p}_m=b_m e^{-mathbf{Hx}}+r_m$ is the expected value of $p_m$. We then perform a quadratic approximation of $E$ with respect to $mathbf{Hx}$ around the point $-(ln(frac{hat{p}_m-r_m}{b_m}))$ using a Taylor expansion. After ignoring the higher-order terms, this yields
$$E(mathbf{Hx,y})=sum_{m=1}^M frac{1}{2} frac{(p_m-r_m)^2}{p_m}(mathbf{Hx}-log(frac{b_m}{p_m-r_m}))^2$$.
But I don't really know how to interpret the random variable $p_m$; can I just set $p_m=hat{p}_m$? That's what I've tried so far: let's assume $r_m=0$. Since $hat{p}_m=b_me^{-[mathbf{Hx}]_m}$, $-(ln(frac{hat{p}_m}{b_m}))$ becomes $[mathbf{Hx}]_m$, we can write the quadratic expansion as:
$$Q(E)=sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) \
+frac{d}{d mathbf{Hx}} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{1}{2} frac{d^2}{d mathbf{Hx}^2} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2$$
Furthermore:
$$E([mathbf{Hx}]_m,mathbf{y})=sum_{m=1}^M(b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}))$$
and
$$frac{d}{d mathbf{Hx}} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})$$
and
$$frac{d^2}{d mathbf{Hx}^2} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} (log(b_m e^{-[mathbf{Hx}]_m})+1)$$
Putting everything together and splitting the third term, I get:
$$Q(E)=sum_{m=1}^M (b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}) \
+b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})(mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (log(b_m e^{-[mathbf{Hx}]_m}))(mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2 \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2)$$
So, assuming $p_m=hat{p}_m$ the 4th term actually equals the proposed quadratic expansion from the paper; but is it correct what I did so far? And if it's right, how do I see that the first three terms vanish? Is there a trick or do I have to look closer?
Any kind of help is highly appreciated. Thank you very much. Btw. the paper I'm reading is: click (p. 1451, part B).
taylor-expansion log-likelihood
$endgroup$
From the paper I'm reading:
Let $mathbf{x}$ represent the distribution of linear attenuation coefficient of an object and $[mathbf{Hx}]_m$ represents their line integral. The $m$th CT measurement, $y_m$, is a Poisson random variable with parameters
$$p_m sim Poisson(b_m e^{[mathbf{Hx}]_m}+r_m)$$
$$y_m = -log(frac{p_m}{b_m})$$
where $b_m$ is the blank scan factor and $r_m$ is the readout-noise. [Since the logarithm is bijective, the negative log-likelihood of $mathbf{y}$ given $mathbf{x}$ is equal to the one of $mathbf{p}$ given $mathbf{x}$. After removing the constants, we use the negative log-likelihood as the data-fidelity term
$$E(mathbf{Hx,y})= sum_{m=1}^M(hat{p}_m-p_m log(hat{p}_m))$$
where $hat{p}_m=b_m e^{-mathbf{Hx}}+r_m$ is the expected value of $p_m$. We then perform a quadratic approximation of $E$ with respect to $mathbf{Hx}$ around the point $-(ln(frac{hat{p}_m-r_m}{b_m}))$ using a Taylor expansion. After ignoring the higher-order terms, this yields
$$E(mathbf{Hx,y})=sum_{m=1}^M frac{1}{2} frac{(p_m-r_m)^2}{p_m}(mathbf{Hx}-log(frac{b_m}{p_m-r_m}))^2$$.
But I don't really know how to interpret the random variable $p_m$; can I just set $p_m=hat{p}_m$? That's what I've tried so far: let's assume $r_m=0$. Since $hat{p}_m=b_me^{-[mathbf{Hx}]_m}$, $-(ln(frac{hat{p}_m}{b_m}))$ becomes $[mathbf{Hx}]_m$, we can write the quadratic expansion as:
$$Q(E)=sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) \
+frac{d}{d mathbf{Hx}} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{1}{2} frac{d^2}{d mathbf{Hx}^2} left( sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y}) right) (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2$$
Furthermore:
$$E([mathbf{Hx}]_m,mathbf{y})=sum_{m=1}^M(b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}))$$
and
$$frac{d}{d mathbf{Hx}} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})$$
and
$$frac{d^2}{d mathbf{Hx}^2} sum_{m=1}^M E([mathbf{Hx}]_m,mathbf{y})= sum_{m=1}^M b_m e^{-[mathbf{Hx}]_m} (log(b_m e^{-[mathbf{Hx}]_m})+1)$$
Putting everything together and splitting the third term, I get:
$$Q(E)=sum_{m=1}^M (b_me^{-[mathbf{Hx}]_m}-b_me^{-[mathbf{Hx}]_m} log(b_me^{-[mathbf{Hx}]_m}) \
+b_m e^{-[mathbf{Hx}]_m} log(b_m e^{-[mathbf{Hx}]_m})(mathbf{Hx}+ln(frac{hat{p}_m}{b_m})) \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (log(b_m e^{-[mathbf{Hx}]_m}))(mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2 \
+frac{b_m e^{-[mathbf{Hx}]_m}}{2} (mathbf{Hx}+ln(frac{hat{p}_m}{b_m}))^2)$$
So, assuming $p_m=hat{p}_m$ the 4th term actually equals the proposed quadratic expansion from the paper; but is it correct what I did so far? And if it's right, how do I see that the first three terms vanish? Is there a trick or do I have to look closer?
Any kind of help is highly appreciated. Thank you very much. Btw. the paper I'm reading is: click (p. 1451, part B).
taylor-expansion log-likelihood
taylor-expansion log-likelihood
edited Jan 6 at 14:07
M. Evans
asked Jan 6 at 1:24
M. EvansM. Evans
257
257
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063382%2fquadratic-expansion-of-log-likelihood%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063382%2fquadratic-expansion-of-log-likelihood%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown