Selecting functions expressed with complex analysis
I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$
It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.
complex-analysis
add a comment |
I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$
It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.
complex-analysis
" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04
1
@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46
@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14
add a comment |
I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$
It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.
complex-analysis
I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$
It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.
complex-analysis
complex-analysis
edited Nov 20 '18 at 8:57
asked Nov 20 '18 at 0:25
TheStudent
1886
1886
" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04
1
@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46
@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14
add a comment |
" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04
1
@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46
@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14
" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04
" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04
1
1
@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46
@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46
@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14
@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14
add a comment |
1 Answer
1
active
oldest
votes
Let $b=ln y$.
Then, your integral is
$$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$
When $b>0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.
By residue theorem,
$$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=2pi i$ when $b>0$.
When $b<0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.
Since no singularities are enclosed,
$$oint_{Gamma}e^{bs}s^{-1}ds=0$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=0$ when $b>0$.
Assembling everything we have,
$$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
begin{cases}
2pi i, &b>0 \
0, &-infty<b<0 \
end{cases}
$$
Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
$$color{red}{
frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
begin{cases}
1, &y>1 \
0, &0<y<1 \
end{cases}
}
$$
as expected.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005743%2fselecting-functions-expressed-with-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $b=ln y$.
Then, your integral is
$$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$
When $b>0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.
By residue theorem,
$$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=2pi i$ when $b>0$.
When $b<0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.
Since no singularities are enclosed,
$$oint_{Gamma}e^{bs}s^{-1}ds=0$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=0$ when $b>0$.
Assembling everything we have,
$$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
begin{cases}
2pi i, &b>0 \
0, &-infty<b<0 \
end{cases}
$$
Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
$$color{red}{
frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
begin{cases}
1, &y>1 \
0, &0<y<1 \
end{cases}
}
$$
as expected.
add a comment |
Let $b=ln y$.
Then, your integral is
$$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$
When $b>0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.
By residue theorem,
$$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=2pi i$ when $b>0$.
When $b<0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.
Since no singularities are enclosed,
$$oint_{Gamma}e^{bs}s^{-1}ds=0$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=0$ when $b>0$.
Assembling everything we have,
$$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
begin{cases}
2pi i, &b>0 \
0, &-infty<b<0 \
end{cases}
$$
Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
$$color{red}{
frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
begin{cases}
1, &y>1 \
0, &0<y<1 \
end{cases}
}
$$
as expected.
add a comment |
Let $b=ln y$.
Then, your integral is
$$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$
When $b>0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.
By residue theorem,
$$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=2pi i$ when $b>0$.
When $b<0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.
Since no singularities are enclosed,
$$oint_{Gamma}e^{bs}s^{-1}ds=0$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=0$ when $b>0$.
Assembling everything we have,
$$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
begin{cases}
2pi i, &b>0 \
0, &-infty<b<0 \
end{cases}
$$
Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
$$color{red}{
frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
begin{cases}
1, &y>1 \
0, &0<y<1 \
end{cases}
}
$$
as expected.
Let $b=ln y$.
Then, your integral is
$$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$
When $b>0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.
By residue theorem,
$$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=2pi i$ when $b>0$.
When $b<0$:
Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$
If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.
Since no singularities are enclosed,
$$oint_{Gamma}e^{bs}s^{-1}ds=0$$
Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$
Thus we have that $I(b)=0$ when $b>0$.
Assembling everything we have,
$$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
begin{cases}
2pi i, &b>0 \
0, &-infty<b<0 \
end{cases}
$$
Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
$$color{red}{
frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
begin{cases}
1, &y>1 \
0, &0<y<1 \
end{cases}
}
$$
as expected.
edited Nov 21 '18 at 3:40
answered Nov 20 '18 at 6:23
Szeto
6,4362926
6,4362926
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005743%2fselecting-functions-expressed-with-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04
1
@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46
@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14