Selecting functions expressed with complex analysis












1














I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$



It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.










share|cite|improve this question
























  • " It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
    – Did
    Nov 20 '18 at 7:04






  • 1




    @Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
    – Szeto
    Nov 20 '18 at 8:46










  • @Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
    – Did
    Nov 20 '18 at 15:14
















1














I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$



It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.










share|cite|improve this question
























  • " It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
    – Did
    Nov 20 '18 at 7:04






  • 1




    @Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
    – Szeto
    Nov 20 '18 at 8:46










  • @Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
    – Did
    Nov 20 '18 at 15:14














1












1








1


0





I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$



It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.










share|cite|improve this question















I just read the identity, for $x>0$,
$$frac{1}{2ipi} int_{x-iinfty}^{x+iinfty} y^s frac{ds}{s} =
left{
begin{array}{cl}
1 & text{if } y > 1 \
0 & text{if } 0 < y < 1 \
end{array}
right.
$$



It do not understand what this integral is true, nor have I much clues on how to address such complex integrals. It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem? I do not understand how it helps here.







complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 '18 at 8:57

























asked Nov 20 '18 at 0:25









TheStudent

1886




1886












  • " It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
    – Did
    Nov 20 '18 at 7:04






  • 1




    @Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
    – Szeto
    Nov 20 '18 at 8:46










  • @Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
    – Did
    Nov 20 '18 at 15:14


















  • " It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
    – Did
    Nov 20 '18 at 7:04






  • 1




    @Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
    – Szeto
    Nov 20 '18 at 8:46










  • @Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
    – Did
    Nov 20 '18 at 15:14
















" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04




" It is said that it is true by "residue calculus", does this mean that we should use the Cauchy residue theorem?" Yesn this means that. Is this your question?
– Did
Nov 20 '18 at 7:04




1




1




@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46




@Did Please re-read the question more carefully. There are hidden questions not marked with a question mark. Please do forgive this fairly new user.
– Szeto
Nov 20 '18 at 8:46












@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14




@Szeto Thanks for this (quite inadequate) admonestation. The site is for explicit questions, especially when the OP is a beginner, not for hidden ones.
– Did
Nov 20 '18 at 15:14










1 Answer
1






active

oldest

votes


















3














Let $b=ln y$.



Then, your integral is
$$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$





When $b>0$:



Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$



If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.



By residue theorem,
$$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$



Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$



Thus we have that $I(b)=2pi i$ when $b>0$.





When $b<0$:



Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
$$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
$$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$



If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.



Since no singularities are enclosed,
$$oint_{Gamma}e^{bs}s^{-1}ds=0$$



Also,
$$begin{align}
left|int_{gamma_2}e^{bs}s^{-1}dsright|
&=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
&le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
&=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
&=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
&xrightarrow{Rtoinfty} 0
end{align}
$$



Thus we have that $I(b)=0$ when $b>0$.





Assembling everything we have,
$$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
begin{cases}
2pi i, &b>0 \
0, &-infty<b<0 \
end{cases}
$$



Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
$$color{red}{
frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
begin{cases}
1, &y>1 \
0, &0<y<1 \
end{cases}
}
$$

as expected.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005743%2fselecting-functions-expressed-with-complex-analysis%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3














    Let $b=ln y$.



    Then, your integral is
    $$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$





    When $b>0$:



    Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
    $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
    $$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$



    If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.



    By residue theorem,
    $$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$



    Also,
    $$begin{align}
    left|int_{gamma_2}e^{bs}s^{-1}dsright|
    &=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
    &le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
    &=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
    &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
    &xrightarrow{Rtoinfty} 0
    end{align}
    $$



    Thus we have that $I(b)=2pi i$ when $b>0$.





    When $b<0$:



    Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
    $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
    $$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$



    If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.



    Since no singularities are enclosed,
    $$oint_{Gamma}e^{bs}s^{-1}ds=0$$



    Also,
    $$begin{align}
    left|int_{gamma_2}e^{bs}s^{-1}dsright|
    &=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
    &le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
    &=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
    &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
    &xrightarrow{Rtoinfty} 0
    end{align}
    $$



    Thus we have that $I(b)=0$ when $b>0$.





    Assembling everything we have,
    $$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
    begin{cases}
    2pi i, &b>0 \
    0, &-infty<b<0 \
    end{cases}
    $$



    Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
    $$color{red}{
    frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
    begin{cases}
    1, &y>1 \
    0, &0<y<1 \
    end{cases}
    }
    $$

    as expected.






    share|cite|improve this answer




























      3














      Let $b=ln y$.



      Then, your integral is
      $$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$





      When $b>0$:



      Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
      $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
      $$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$



      If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.



      By residue theorem,
      $$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$



      Also,
      $$begin{align}
      left|int_{gamma_2}e^{bs}s^{-1}dsright|
      &=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
      &le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
      &=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
      &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
      &xrightarrow{Rtoinfty} 0
      end{align}
      $$



      Thus we have that $I(b)=2pi i$ when $b>0$.





      When $b<0$:



      Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
      $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
      $$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$



      If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.



      Since no singularities are enclosed,
      $$oint_{Gamma}e^{bs}s^{-1}ds=0$$



      Also,
      $$begin{align}
      left|int_{gamma_2}e^{bs}s^{-1}dsright|
      &=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
      &le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
      &=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
      &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
      &xrightarrow{Rtoinfty} 0
      end{align}
      $$



      Thus we have that $I(b)=0$ when $b>0$.





      Assembling everything we have,
      $$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
      begin{cases}
      2pi i, &b>0 \
      0, &-infty<b<0 \
      end{cases}
      $$



      Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
      $$color{red}{
      frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
      begin{cases}
      1, &y>1 \
      0, &0<y<1 \
      end{cases}
      }
      $$

      as expected.






      share|cite|improve this answer


























        3












        3








        3






        Let $b=ln y$.



        Then, your integral is
        $$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$





        When $b>0$:



        Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
        $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
        $$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$



        If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.



        By residue theorem,
        $$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$



        Also,
        $$begin{align}
        left|int_{gamma_2}e^{bs}s^{-1}dsright|
        &=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
        &le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
        &=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
        &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
        &xrightarrow{Rtoinfty} 0
        end{align}
        $$



        Thus we have that $I(b)=2pi i$ when $b>0$.





        When $b<0$:



        Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
        $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
        $$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$



        If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.



        Since no singularities are enclosed,
        $$oint_{Gamma}e^{bs}s^{-1}ds=0$$



        Also,
        $$begin{align}
        left|int_{gamma_2}e^{bs}s^{-1}dsright|
        &=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
        &le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
        &=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
        &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
        &xrightarrow{Rtoinfty} 0
        end{align}
        $$



        Thus we have that $I(b)=0$ when $b>0$.





        Assembling everything we have,
        $$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
        begin{cases}
        2pi i, &b>0 \
        0, &-infty<b<0 \
        end{cases}
        $$



        Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
        $$color{red}{
        frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
        begin{cases}
        1, &y>1 \
        0, &0<y<1 \
        end{cases}
        }
        $$

        as expected.






        share|cite|improve this answer














        Let $b=ln y$.



        Then, your integral is
        $$I(b)=lim_{Rtoinfty}int^{x+iR}_{x-iR}e^{bs}s^{-1}ds$$





        When $b>0$:



        Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
        $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
        $$gamma_2:~~~~s(t)=x+Re^{it}, frac{pi}2le tle frac{3pi}2$$



        If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the left, forming a closed contour.



        By residue theorem,
        $$oint_{Gamma}e^{bs}s^{-1}ds=2pi ioperatorname*{Res}_{s=0}e^{bs}s^{-1}=2pi i$$



        Also,
        $$begin{align}
        left|int_{gamma_2}e^{bs}s^{-1}dsright|
        &=left|int^{3pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
        &le int^{3pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
        &=int^{3pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
        &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{pi}2,frac{3pi}2right]$}} \
        &xrightarrow{Rtoinfty} 0
        end{align}
        $$



        Thus we have that $I(b)=2pi i$ when $b>0$.





        When $b<0$:



        Pick a contour $Gamma(R)=gamma_1cupgamma_2$, parametrized by
        $$gamma_1:~~~~s(t)=x+it, -Rle tle R$$
        $$gamma_2:~~~~s(t)=x+Re^{it}, -frac{pi}2le tle frac{pi}2$$



        If you draw it out, it is the integration path of $I(b)$ plus a semicircle on the right, forming a closed contour.



        Since no singularities are enclosed,
        $$oint_{Gamma}e^{bs}s^{-1}ds=0$$



        Also,
        $$begin{align}
        left|int_{gamma_2}e^{bs}s^{-1}dsright|
        &=left|int^{-pi/2}_{pi/2}e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}dt right|\
        &le int^{-pi/2}_{pi/2}left|e^{bx}~e^{bRexp(it)}frac{iRe^{it}}{x+Re^{it}}right|dt \
        &=int^{-pi/2}_{pi/2}e^{bx}~e^{bRcos t}frac{R}{|x+Re^{it}|}dt \
        &=pi e^{bx}~e^{bRcos c}frac{R}{|x+Re^{ic}|} qquad{text{where $cinleft[frac{-pi}2,frac{pi}2right]$}} \
        &xrightarrow{Rtoinfty} 0
        end{align}
        $$



        Thus we have that $I(b)=0$ when $b>0$.





        Assembling everything we have,
        $$int^{x+iinfty}_{x-iinfty}e^{bs}s^{-1}ds=
        begin{cases}
        2pi i, &b>0 \
        0, &-infty<b<0 \
        end{cases}
        $$



        Substituting in $b=ln y$ and dividing both sides by $2pi i$ one recovers
        $$color{red}{
        frac1{2pi i}int^{x+iinfty}_{x-iinfty}y^{s}frac{ds}s=
        begin{cases}
        1, &y>1 \
        0, &0<y<1 \
        end{cases}
        }
        $$

        as expected.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 21 '18 at 3:40

























        answered Nov 20 '18 at 6:23









        Szeto

        6,4362926




        6,4362926






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005743%2fselecting-functions-expressed-with-complex-analysis%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter