Sigma laws problem / sigma distribution
$begingroup$
]1
Hi
Can somebody explain to me how that was made using sigma laws .
Thank you for help in advance
calculus probability
$endgroup$
add a comment |
$begingroup$
]1
Hi
Can somebody explain to me how that was made using sigma laws .
Thank you for help in advance
calculus probability
$endgroup$
add a comment |
$begingroup$
]1
Hi
Can somebody explain to me how that was made using sigma laws .
Thank you for help in advance
calculus probability
$endgroup$
]1
Hi
Can somebody explain to me how that was made using sigma laws .
Thank you for help in advance
calculus probability
calculus probability
asked Jan 7 at 19:08


Philip MichalowskiPhilip Michalowski
61
61
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well this is easy! Rewrite the sum as
$$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
No sigma laws were used here!
Edit:
$$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$
$endgroup$
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065376%2fsigma-laws-problem-sigma-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well this is easy! Rewrite the sum as
$$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
No sigma laws were used here!
Edit:
$$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$
$endgroup$
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
add a comment |
$begingroup$
Well this is easy! Rewrite the sum as
$$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
No sigma laws were used here!
Edit:
$$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$
$endgroup$
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
add a comment |
$begingroup$
Well this is easy! Rewrite the sum as
$$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
No sigma laws were used here!
Edit:
$$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$
$endgroup$
Well this is easy! Rewrite the sum as
$$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
No sigma laws were used here!
Edit:
$$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$
edited Jan 7 at 19:34
answered Jan 7 at 19:20
FakemistakeFakemistake
1,692815
1,692815
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
add a comment |
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
ok so how do you solve the first sum ∑n . Do you just multiply by n ?
$endgroup$
– Philip Michalowski
Jan 7 at 19:25
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
$$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
$endgroup$
– John Doe
Jan 7 at 19:33
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
$endgroup$
– callculus
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
$begingroup$
@JohnDoe oh ok , thank you very much
$endgroup$
– Philip Michalowski
Jan 7 at 19:34
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065376%2fsigma-laws-problem-sigma-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown