Sigma laws problem / sigma distribution












0












$begingroup$


]1



Hi
Can somebody explain to me how that was made using sigma laws .
Thank you for help in advance










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    ]1



    Hi
    Can somebody explain to me how that was made using sigma laws .
    Thank you for help in advance










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      ]1



      Hi
      Can somebody explain to me how that was made using sigma laws .
      Thank you for help in advance










      share|cite|improve this question









      $endgroup$




      ]1



      Hi
      Can somebody explain to me how that was made using sigma laws .
      Thank you for help in advance







      calculus probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 7 at 19:08









      Philip MichalowskiPhilip Michalowski

      61




      61






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Well this is easy! Rewrite the sum as
          $$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
          No sigma laws were used here!



          Edit:
          $$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            ok so how do you solve the first sum ∑n . Do you just multiply by n ?
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:25










          • $begingroup$
            $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
            $endgroup$
            – John Doe
            Jan 7 at 19:33












          • $begingroup$
            @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
            $endgroup$
            – callculus
            Jan 7 at 19:34












          • $begingroup$
            @JohnDoe oh ok , thank you very much
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:34











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065376%2fsigma-laws-problem-sigma-distribution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Well this is easy! Rewrite the sum as
          $$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
          No sigma laws were used here!



          Edit:
          $$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            ok so how do you solve the first sum ∑n . Do you just multiply by n ?
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:25










          • $begingroup$
            $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
            $endgroup$
            – John Doe
            Jan 7 at 19:33












          • $begingroup$
            @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
            $endgroup$
            – callculus
            Jan 7 at 19:34












          • $begingroup$
            @JohnDoe oh ok , thank you very much
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:34
















          1












          $begingroup$

          Well this is easy! Rewrite the sum as
          $$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
          No sigma laws were used here!



          Edit:
          $$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            ok so how do you solve the first sum ∑n . Do you just multiply by n ?
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:25










          • $begingroup$
            $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
            $endgroup$
            – John Doe
            Jan 7 at 19:33












          • $begingroup$
            @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
            $endgroup$
            – callculus
            Jan 7 at 19:34












          • $begingroup$
            @JohnDoe oh ok , thank you very much
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:34














          1












          1








          1





          $begingroup$

          Well this is easy! Rewrite the sum as
          $$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
          No sigma laws were used here!



          Edit:
          $$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$






          share|cite|improve this answer











          $endgroup$



          Well this is easy! Rewrite the sum as
          $$sum_{k=1}^{n}n-k=sum_{k=1}^n n-sum_{k=1}^{n}k=n^2-frac{n(n+1)}{2}=n^2-frac{n^2(1+tfrac{1}{n})}{2}=n^2Big(frac{2-1-tfrac{1}{n}}{2}Big)=n^2Big(frac{1-tfrac{1}{n}}{2}Big)$$
          No sigma laws were used here!



          Edit:
          $$sum_{k=1}^n n=underbrace{n+cdots+n}_{ntext{ times}}=n^2$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 7 at 19:34

























          answered Jan 7 at 19:20









          FakemistakeFakemistake

          1,692815




          1,692815












          • $begingroup$
            ok so how do you solve the first sum ∑n . Do you just multiply by n ?
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:25










          • $begingroup$
            $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
            $endgroup$
            – John Doe
            Jan 7 at 19:33












          • $begingroup$
            @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
            $endgroup$
            – callculus
            Jan 7 at 19:34












          • $begingroup$
            @JohnDoe oh ok , thank you very much
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:34


















          • $begingroup$
            ok so how do you solve the first sum ∑n . Do you just multiply by n ?
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:25










          • $begingroup$
            $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
            $endgroup$
            – John Doe
            Jan 7 at 19:33












          • $begingroup$
            @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
            $endgroup$
            – callculus
            Jan 7 at 19:34












          • $begingroup$
            @JohnDoe oh ok , thank you very much
            $endgroup$
            – Philip Michalowski
            Jan 7 at 19:34
















          $begingroup$
          ok so how do you solve the first sum ∑n . Do you just multiply by n ?
          $endgroup$
          – Philip Michalowski
          Jan 7 at 19:25




          $begingroup$
          ok so how do you solve the first sum ∑n . Do you just multiply by n ?
          $endgroup$
          – Philip Michalowski
          Jan 7 at 19:25












          $begingroup$
          $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
          $endgroup$
          – John Doe
          Jan 7 at 19:33






          $begingroup$
          $$sum_{k=1}^n n=nsum_{k=1}^n 1=nunderbrace{(1+cdots+1)}_{text{n times}}=n^2$$
          $endgroup$
          – John Doe
          Jan 7 at 19:33














          $begingroup$
          @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
          $endgroup$
          – callculus
          Jan 7 at 19:34






          $begingroup$
          @PhilipMichalowski $$sumlimits_{k=1}^n n=underbrace{n+n+...+n}_{textrm{n-times}}=ncdot n$$
          $endgroup$
          – callculus
          Jan 7 at 19:34














          $begingroup$
          @JohnDoe oh ok , thank you very much
          $endgroup$
          – Philip Michalowski
          Jan 7 at 19:34




          $begingroup$
          @JohnDoe oh ok , thank you very much
          $endgroup$
          – Philip Michalowski
          Jan 7 at 19:34


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065376%2fsigma-laws-problem-sigma-distribution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith