a combinatoric limit proof
$begingroup$
Let $beta >4$. Prove that if
$$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
then
$$lim_{n=0}frac{a_n}{beta^n} = 0$$
My attempt to solve it:
I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.
Any help in showing this or a completely different solution will be appreciated.
combinatorics binomial-coefficients binomial-theorem
$endgroup$
add a comment |
$begingroup$
Let $beta >4$. Prove that if
$$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
then
$$lim_{n=0}frac{a_n}{beta^n} = 0$$
My attempt to solve it:
I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.
Any help in showing this or a completely different solution will be appreciated.
combinatorics binomial-coefficients binomial-theorem
$endgroup$
add a comment |
$begingroup$
Let $beta >4$. Prove that if
$$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
then
$$lim_{n=0}frac{a_n}{beta^n} = 0$$
My attempt to solve it:
I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.
Any help in showing this or a completely different solution will be appreciated.
combinatorics binomial-coefficients binomial-theorem
$endgroup$
Let $beta >4$. Prove that if
$$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
then
$$lim_{n=0}frac{a_n}{beta^n} = 0$$
My attempt to solve it:
I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.
Any help in showing this or a completely different solution will be appreciated.
combinatorics binomial-coefficients binomial-theorem
combinatorics binomial-coefficients binomial-theorem
edited Jan 13 at 20:32
leonbloy
41.1k645107
41.1k645107
asked Jan 13 at 16:47
Robo YonuomaroRobo Yonuomaro
786
786
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
&=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
&=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
end{eqnarray}$$ Since it holds by binomial theorem that
$$
sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
$$we have (by letting $x=1$)
$$
0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
$$ For $beta>4$, we have
$$
lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
$$
$endgroup$
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072214%2fa-combinatoric-limit-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
&=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
&=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
end{eqnarray}$$ Since it holds by binomial theorem that
$$
sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
$$we have (by letting $x=1$)
$$
0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
$$ For $beta>4$, we have
$$
lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
$$
$endgroup$
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
add a comment |
$begingroup$
$$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
&=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
&=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
end{eqnarray}$$ Since it holds by binomial theorem that
$$
sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
$$we have (by letting $x=1$)
$$
0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
$$ For $beta>4$, we have
$$
lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
$$
$endgroup$
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
add a comment |
$begingroup$
$$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
&=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
&=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
end{eqnarray}$$ Since it holds by binomial theorem that
$$
sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
$$we have (by letting $x=1$)
$$
0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
$$ For $beta>4$, we have
$$
lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
$$
$endgroup$
$$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
&=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
&=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
end{eqnarray}$$ Since it holds by binomial theorem that
$$
sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
$$we have (by letting $x=1$)
$$
0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
$$ For $beta>4$, we have
$$
lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
$$
answered Jan 13 at 17:09
SongSong
13k631
13k631
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
add a comment |
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
$endgroup$
– Robo Yonuomaro
Jan 13 at 17:12
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
$begingroup$
@RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
$endgroup$
– Song
Jan 13 at 17:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072214%2fa-combinatoric-limit-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown