a combinatoric limit proof












0












$begingroup$


Let $beta >4$. Prove that if
$$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
then
$$lim_{n=0}frac{a_n}{beta^n} = 0$$
My attempt to solve it:



I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.



Any help in showing this or a completely different solution will be appreciated.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $beta >4$. Prove that if
    $$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
    then
    $$lim_{n=0}frac{a_n}{beta^n} = 0$$
    My attempt to solve it:



    I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.



    Any help in showing this or a completely different solution will be appreciated.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      0



      $begingroup$


      Let $beta >4$. Prove that if
      $$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
      then
      $$lim_{n=0}frac{a_n}{beta^n} = 0$$
      My attempt to solve it:



      I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.



      Any help in showing this or a completely different solution will be appreciated.










      share|cite|improve this question











      $endgroup$




      Let $beta >4$. Prove that if
      $$a_n = sum_{k=1}^{n}k{nchoose k}{nchoose {k-1}}$$
      then
      $$lim_{n=0}frac{a_n}{beta^n} = 0$$
      My attempt to solve it:



      I tried to show that $a_n leq 4^n = sum_{k = 1}^{n}k{nchoose k}3^k$ (by derivating the binomial identity) so what I actually need to show is that ${nchoose {k-1}} leq 3^k$ for every $kin mathbb{N}$, and here I got stuck.



      Any help in showing this or a completely different solution will be appreciated.







      combinatorics binomial-coefficients binomial-theorem






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 13 at 20:32









      leonbloy

      41.1k645107




      41.1k645107










      asked Jan 13 at 16:47









      Robo YonuomaroRobo Yonuomaro

      786




      786






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          $$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
          &=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
          &=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
          end{eqnarray}$$
          Since it holds by binomial theorem that
          $$
          sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
          $$
          we have (by letting $x=1$)
          $$
          0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
          $$
          For $beta>4$, we have
          $$
          lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
            $endgroup$
            – Robo Yonuomaro
            Jan 13 at 17:12












          • $begingroup$
            @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
            $endgroup$
            – Song
            Jan 13 at 17:29













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072214%2fa-combinatoric-limit-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          $$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
          &=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
          &=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
          end{eqnarray}$$
          Since it holds by binomial theorem that
          $$
          sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
          $$
          we have (by letting $x=1$)
          $$
          0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
          $$
          For $beta>4$, we have
          $$
          lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
            $endgroup$
            – Robo Yonuomaro
            Jan 13 at 17:12












          • $begingroup$
            @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
            $endgroup$
            – Song
            Jan 13 at 17:29


















          0












          $begingroup$

          $$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
          &=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
          &=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
          end{eqnarray}$$
          Since it holds by binomial theorem that
          $$
          sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
          $$
          we have (by letting $x=1$)
          $$
          0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
          $$
          For $beta>4$, we have
          $$
          lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
            $endgroup$
            – Robo Yonuomaro
            Jan 13 at 17:12












          • $begingroup$
            @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
            $endgroup$
            – Song
            Jan 13 at 17:29
















          0












          0








          0





          $begingroup$

          $$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
          &=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
          &=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
          end{eqnarray}$$
          Since it holds by binomial theorem that
          $$
          sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
          $$
          we have (by letting $x=1$)
          $$
          0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
          $$
          For $beta>4$, we have
          $$
          lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
          $$






          share|cite|improve this answer









          $endgroup$



          $$begin{eqnarray}a_n &=&sum_{k=0}^{n}k{nchoose k}{nchoose {k-1}}\&=&nsum_{k=0}^{n}{n-1choose k-1}{nchoose {k-1}}\
          &=&nsum_{k=0}^{n}{n-1choose n-k}{nchoose {k-1}}\
          &=&nbinom{2n-1}{n-1}=frac{n}{2}binom{2n}{n}.
          end{eqnarray}$$
          Since it holds by binomial theorem that
          $$
          sum_{k=0}^n binom{2n}{k}kx^{k-1}=2n(1+x)^{2n-1},
          $$
          we have (by letting $x=1$)
          $$
          0le 2a_n = nbinom{2n}{n}le 2ncdot 2^{2n-1}=ncdot 4^n.
          $$
          For $beta>4$, we have
          $$
          lim_{ntoinfty} frac{a_n}{beta^n}le lim_{ntoinfty} frac{n}{2}left(frac{4}{beta}right)^n = 0.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 13 at 17:09









          SongSong

          13k631




          13k631












          • $begingroup$
            why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
            $endgroup$
            – Robo Yonuomaro
            Jan 13 at 17:12












          • $begingroup$
            @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
            $endgroup$
            – Song
            Jan 13 at 17:29




















          • $begingroup$
            why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
            $endgroup$
            – Robo Yonuomaro
            Jan 13 at 17:12












          • $begingroup$
            @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
            $endgroup$
            – Song
            Jan 13 at 17:29


















          $begingroup$
          why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
          $endgroup$
          – Robo Yonuomaro
          Jan 13 at 17:12






          $begingroup$
          why is $sum_{k=0}^{n}{{n-1}choose{k-n}}{nchoose {k-1}} = {{2n-1}choose{n-1}}$?
          $endgroup$
          – Robo Yonuomaro
          Jan 13 at 17:12














          $begingroup$
          @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
          $endgroup$
          – Song
          Jan 13 at 17:29






          $begingroup$
          @RoboYonuomaro It can be obtained by comparing coefficients of $z^{n−1}$ on both sides of $$(1+z)^{n−1}(1+z)^n=(1+z)^{2n−1}.$$ And there is a typo: it should be $sum_{k=0}^{n}{{n-1}choose{n-k}}{nchoose {k-1}} =sum_{k=0}^{n-1}{{n-1}choose{n-k-1}}{nchoose {k}} = {{2n-1}choose{n-1}}.$
          $endgroup$
          – Song
          Jan 13 at 17:29




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072214%2fa-combinatoric-limit-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter