How to prove this limit is $1/4$
$begingroup$
$$underset{nto infty }{mathop{lim }},int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}$$
I start thinking first in the Lebesgue monotone convergent theorem
but this leads to closed road
is there any shortcut to solve this problem ??
real-analysis integration lebesgue-integral
$endgroup$
add a comment |
$begingroup$
$$underset{nto infty }{mathop{lim }},int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}$$
I start thinking first in the Lebesgue monotone convergent theorem
but this leads to closed road
is there any shortcut to solve this problem ??
real-analysis integration lebesgue-integral
$endgroup$
add a comment |
$begingroup$
$$underset{nto infty }{mathop{lim }},int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}$$
I start thinking first in the Lebesgue monotone convergent theorem
but this leads to closed road
is there any shortcut to solve this problem ??
real-analysis integration lebesgue-integral
$endgroup$
$$underset{nto infty }{mathop{lim }},int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}$$
I start thinking first in the Lebesgue monotone convergent theorem
but this leads to closed road
is there any shortcut to solve this problem ??
real-analysis integration lebesgue-integral
real-analysis integration lebesgue-integral
asked Jan 13 at 19:51
Ramez HindiRamez Hindi
1437
1437
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The integral has an equivalent expression
$$
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]
$$ where $U_i$, $ile n$ are independently and uniformly distributed random variables on $[0,1]$. This gives
$$begin{eqnarray}
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]&=&frac{1}{n^2}sum_{i,j=1}^nEleft[U_iU_jright]\
&=&frac{1}{n^2}sum_{i=1}^nEleft[U_i^2right] +frac{1}{n^2}sum_{ine j}Eleft[U_iU_jright]\
&=&frac{n}{n^2}frac{1}{3}+frac{n(n-1)}{n^2}frac{1}{4}to frac{1}{4}
end{eqnarray}$$
since $E[U_i]=int_0^1 xdx=frac{1}{2}$, $E[U_i^2]=int_0^1 x^2dx =frac{1}{3}$ and $E[U_iU_j]=E[U_i]E[U_j]=frac{1}{2}cdotfrac{1}{2}=frac{1}{4}$ for all $ine j$.
$endgroup$
add a comment |
$begingroup$
We have $$(x_1+x_2+cdots +x_n)^2=sum_i x_i^2+sum_{i,jne i} x_ix_j$$first of all note that $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_i}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=int_0^1 x_i^2dx_i={1over 3}$$and $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_ix_j}{}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 4}$$therefore$$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( {{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=ncdot {1over 3}+(n^2-n){1over 4}$$and by substitution we obtain $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 3n}+{n-1over 4n}$$which obviously shows that the limit is $1over 4$.
$endgroup$
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
add a comment |
$begingroup$
Suppose $X_1,X_2,ldots$ are independent random variables having the uniform distribution on $[0,1]$. Then the common expectation of these variables exist and equals $mu=1/2$.
Define $$overline X_n=frac{1}{n}sum_{k=1}^n X_k$$
By Khintchine's weak law of large numbers, $$overline X_nstackrel{P}{longrightarrow}muquadtext{ as }quad ntoinfty$$
And by the continuous mapping theorem, $$overline X_n^2stackrel{P}{longrightarrow}mu^2quadtext{ as }quad ntoinftytag{1}$$
Moreover, $$0le X_1,ldots,X_nle 1implies 0le overline X_nle 1implies 0le overline X_n^2le 1tag{2}$$
$(1)$ and $(2)$ together imply $$int_{[0,1]^n}left(frac{x_1+cdots+x_n}{n}right)^2mathrm{d}x_1ldotsmathrm{d}x_n = Eleft(overline X_n^2right)stackrel{ntoinfty}{longrightarrow}frac{1}{4}$$
$endgroup$
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072446%2fhow-to-prove-this-limit-is-1-4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The integral has an equivalent expression
$$
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]
$$ where $U_i$, $ile n$ are independently and uniformly distributed random variables on $[0,1]$. This gives
$$begin{eqnarray}
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]&=&frac{1}{n^2}sum_{i,j=1}^nEleft[U_iU_jright]\
&=&frac{1}{n^2}sum_{i=1}^nEleft[U_i^2right] +frac{1}{n^2}sum_{ine j}Eleft[U_iU_jright]\
&=&frac{n}{n^2}frac{1}{3}+frac{n(n-1)}{n^2}frac{1}{4}to frac{1}{4}
end{eqnarray}$$
since $E[U_i]=int_0^1 xdx=frac{1}{2}$, $E[U_i^2]=int_0^1 x^2dx =frac{1}{3}$ and $E[U_iU_j]=E[U_i]E[U_j]=frac{1}{2}cdotfrac{1}{2}=frac{1}{4}$ for all $ine j$.
$endgroup$
add a comment |
$begingroup$
The integral has an equivalent expression
$$
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]
$$ where $U_i$, $ile n$ are independently and uniformly distributed random variables on $[0,1]$. This gives
$$begin{eqnarray}
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]&=&frac{1}{n^2}sum_{i,j=1}^nEleft[U_iU_jright]\
&=&frac{1}{n^2}sum_{i=1}^nEleft[U_i^2right] +frac{1}{n^2}sum_{ine j}Eleft[U_iU_jright]\
&=&frac{n}{n^2}frac{1}{3}+frac{n(n-1)}{n^2}frac{1}{4}to frac{1}{4}
end{eqnarray}$$
since $E[U_i]=int_0^1 xdx=frac{1}{2}$, $E[U_i^2]=int_0^1 x^2dx =frac{1}{3}$ and $E[U_iU_j]=E[U_i]E[U_j]=frac{1}{2}cdotfrac{1}{2}=frac{1}{4}$ for all $ine j$.
$endgroup$
add a comment |
$begingroup$
The integral has an equivalent expression
$$
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]
$$ where $U_i$, $ile n$ are independently and uniformly distributed random variables on $[0,1]$. This gives
$$begin{eqnarray}
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]&=&frac{1}{n^2}sum_{i,j=1}^nEleft[U_iU_jright]\
&=&frac{1}{n^2}sum_{i=1}^nEleft[U_i^2right] +frac{1}{n^2}sum_{ine j}Eleft[U_iU_jright]\
&=&frac{n}{n^2}frac{1}{3}+frac{n(n-1)}{n^2}frac{1}{4}to frac{1}{4}
end{eqnarray}$$
since $E[U_i]=int_0^1 xdx=frac{1}{2}$, $E[U_i^2]=int_0^1 x^2dx =frac{1}{3}$ and $E[U_iU_j]=E[U_i]E[U_j]=frac{1}{2}cdotfrac{1}{2}=frac{1}{4}$ for all $ine j$.
$endgroup$
The integral has an equivalent expression
$$
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]
$$ where $U_i$, $ile n$ are independently and uniformly distributed random variables on $[0,1]$. This gives
$$begin{eqnarray}
Eleft[left(frac{1}{n}sum_{i=1}^n U_iright)^2right]&=&frac{1}{n^2}sum_{i,j=1}^nEleft[U_iU_jright]\
&=&frac{1}{n^2}sum_{i=1}^nEleft[U_i^2right] +frac{1}{n^2}sum_{ine j}Eleft[U_iU_jright]\
&=&frac{n}{n^2}frac{1}{3}+frac{n(n-1)}{n^2}frac{1}{4}to frac{1}{4}
end{eqnarray}$$
since $E[U_i]=int_0^1 xdx=frac{1}{2}$, $E[U_i^2]=int_0^1 x^2dx =frac{1}{3}$ and $E[U_iU_j]=E[U_i]E[U_j]=frac{1}{2}cdotfrac{1}{2}=frac{1}{4}$ for all $ine j$.
answered Jan 13 at 19:59
SongSong
13.1k632
13.1k632
add a comment |
add a comment |
$begingroup$
We have $$(x_1+x_2+cdots +x_n)^2=sum_i x_i^2+sum_{i,jne i} x_ix_j$$first of all note that $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_i}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=int_0^1 x_i^2dx_i={1over 3}$$and $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_ix_j}{}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 4}$$therefore$$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( {{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=ncdot {1over 3}+(n^2-n){1over 4}$$and by substitution we obtain $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 3n}+{n-1over 4n}$$which obviously shows that the limit is $1over 4$.
$endgroup$
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
add a comment |
$begingroup$
We have $$(x_1+x_2+cdots +x_n)^2=sum_i x_i^2+sum_{i,jne i} x_ix_j$$first of all note that $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_i}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=int_0^1 x_i^2dx_i={1over 3}$$and $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_ix_j}{}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 4}$$therefore$$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( {{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=ncdot {1over 3}+(n^2-n){1over 4}$$and by substitution we obtain $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 3n}+{n-1over 4n}$$which obviously shows that the limit is $1over 4$.
$endgroup$
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
add a comment |
$begingroup$
We have $$(x_1+x_2+cdots +x_n)^2=sum_i x_i^2+sum_{i,jne i} x_ix_j$$first of all note that $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_i}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=int_0^1 x_i^2dx_i={1over 3}$$and $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_ix_j}{}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 4}$$therefore$$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( {{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=ncdot {1over 3}+(n^2-n){1over 4}$$and by substitution we obtain $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 3n}+{n-1over 4n}$$which obviously shows that the limit is $1over 4$.
$endgroup$
We have $$(x_1+x_2+cdots +x_n)^2=sum_i x_i^2+sum_{i,jne i} x_ix_j$$first of all note that $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_i}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=int_0^1 x_i^2dx_i={1over 3}$$and $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{x_ix_j}{}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 4}$$therefore$$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( {{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}=ncdot {1over 3}+(n^2-n){1over 4}$$and by substitution we obtain $$int_{0}^{1}{int_{0}^{1}{cdots int_{0}^{1}{{{left( frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} right)}^{2}}d{{x}_{1}}d{{x}_{2}}cdots d{{x}_{n}}}}}={1over 3n}+{n-1over 4n}$$which obviously shows that the limit is $1over 4$.
answered Jan 13 at 20:19
Mostafa AyazMostafa Ayaz
15.6k3939
15.6k3939
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
add a comment |
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
Sorry first line is not clear to if we say $(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$ by induction you will get the following result , ${{left( sumnolimits_{i=1}^{n}{{{x}_{i}}} right)}^{2}}=sumnolimits_{i=1}^{n}{x_{i}^{2}+2sumnolimits_{ine j}^{n}{{{x}_{i}}{{x}_{j}}}}$
$endgroup$
– Ramez Hindi
Jan 13 at 21:34
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
$begingroup$
In fact you get $(sum_i x_i)^2=x_1^2+cdots + x_n^2+2sum_{i<j}x_ix_j$. The multiplicity has been considered in my equation since $2x_ix_j=x_ix_j+x_jx_i$ whenever $ine j$
$endgroup$
– Mostafa Ayaz
Jan 13 at 21:38
add a comment |
$begingroup$
Suppose $X_1,X_2,ldots$ are independent random variables having the uniform distribution on $[0,1]$. Then the common expectation of these variables exist and equals $mu=1/2$.
Define $$overline X_n=frac{1}{n}sum_{k=1}^n X_k$$
By Khintchine's weak law of large numbers, $$overline X_nstackrel{P}{longrightarrow}muquadtext{ as }quad ntoinfty$$
And by the continuous mapping theorem, $$overline X_n^2stackrel{P}{longrightarrow}mu^2quadtext{ as }quad ntoinftytag{1}$$
Moreover, $$0le X_1,ldots,X_nle 1implies 0le overline X_nle 1implies 0le overline X_n^2le 1tag{2}$$
$(1)$ and $(2)$ together imply $$int_{[0,1]^n}left(frac{x_1+cdots+x_n}{n}right)^2mathrm{d}x_1ldotsmathrm{d}x_n = Eleft(overline X_n^2right)stackrel{ntoinfty}{longrightarrow}frac{1}{4}$$
$endgroup$
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
|
show 1 more comment
$begingroup$
Suppose $X_1,X_2,ldots$ are independent random variables having the uniform distribution on $[0,1]$. Then the common expectation of these variables exist and equals $mu=1/2$.
Define $$overline X_n=frac{1}{n}sum_{k=1}^n X_k$$
By Khintchine's weak law of large numbers, $$overline X_nstackrel{P}{longrightarrow}muquadtext{ as }quad ntoinfty$$
And by the continuous mapping theorem, $$overline X_n^2stackrel{P}{longrightarrow}mu^2quadtext{ as }quad ntoinftytag{1}$$
Moreover, $$0le X_1,ldots,X_nle 1implies 0le overline X_nle 1implies 0le overline X_n^2le 1tag{2}$$
$(1)$ and $(2)$ together imply $$int_{[0,1]^n}left(frac{x_1+cdots+x_n}{n}right)^2mathrm{d}x_1ldotsmathrm{d}x_n = Eleft(overline X_n^2right)stackrel{ntoinfty}{longrightarrow}frac{1}{4}$$
$endgroup$
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
|
show 1 more comment
$begingroup$
Suppose $X_1,X_2,ldots$ are independent random variables having the uniform distribution on $[0,1]$. Then the common expectation of these variables exist and equals $mu=1/2$.
Define $$overline X_n=frac{1}{n}sum_{k=1}^n X_k$$
By Khintchine's weak law of large numbers, $$overline X_nstackrel{P}{longrightarrow}muquadtext{ as }quad ntoinfty$$
And by the continuous mapping theorem, $$overline X_n^2stackrel{P}{longrightarrow}mu^2quadtext{ as }quad ntoinftytag{1}$$
Moreover, $$0le X_1,ldots,X_nle 1implies 0le overline X_nle 1implies 0le overline X_n^2le 1tag{2}$$
$(1)$ and $(2)$ together imply $$int_{[0,1]^n}left(frac{x_1+cdots+x_n}{n}right)^2mathrm{d}x_1ldotsmathrm{d}x_n = Eleft(overline X_n^2right)stackrel{ntoinfty}{longrightarrow}frac{1}{4}$$
$endgroup$
Suppose $X_1,X_2,ldots$ are independent random variables having the uniform distribution on $[0,1]$. Then the common expectation of these variables exist and equals $mu=1/2$.
Define $$overline X_n=frac{1}{n}sum_{k=1}^n X_k$$
By Khintchine's weak law of large numbers, $$overline X_nstackrel{P}{longrightarrow}muquadtext{ as }quad ntoinfty$$
And by the continuous mapping theorem, $$overline X_n^2stackrel{P}{longrightarrow}mu^2quadtext{ as }quad ntoinftytag{1}$$
Moreover, $$0le X_1,ldots,X_nle 1implies 0le overline X_nle 1implies 0le overline X_n^2le 1tag{2}$$
$(1)$ and $(2)$ together imply $$int_{[0,1]^n}left(frac{x_1+cdots+x_n}{n}right)^2mathrm{d}x_1ldotsmathrm{d}x_n = Eleft(overline X_n^2right)stackrel{ntoinfty}{longrightarrow}frac{1}{4}$$
edited Jan 15 at 7:08
answered Jan 13 at 20:00
StubbornAtomStubbornAtom
5,98811238
5,98811238
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
|
show 1 more comment
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
It’s always nice to see an easygoing probability solution to what appears to be a monstrous analytic problem. +1
$endgroup$
– LoveTooNap29
Jan 13 at 20:08
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
there must be some confusion. I upvoted both yours and Song’s answer for the use of probability.
$endgroup$
– LoveTooNap29
Jan 13 at 20:33
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
@LoveTooNap29 I wasn't replying to you.
$endgroup$
– StubbornAtom
Jan 13 at 20:34
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
$X_nto X$ in probability isn't enough to conclude that $mathbb{E}[X_n]tomathbb{E}[X]$. It would be better to use the strong law of large numbers, plus dominated convergence.
$endgroup$
– carmichael561
Jan 15 at 0:27
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
$begingroup$
@carmichael561 Thank you. What if I add the fact that $|X_n|<1$ to my answer? I think that salvages the argument.
$endgroup$
– StubbornAtom
Jan 15 at 4:59
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072446%2fhow-to-prove-this-limit-is-1-4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown