Show $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$












0












$begingroup$


Let $alpha neq 0$



Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:



Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$



Ideas:



Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore



$int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:



$int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$



and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$



But this leads nowhere...



Any ideas?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $alpha neq 0$



    Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:



    Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$



    Ideas:



    Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore



    $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:



    $int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$



    and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$



    But this leads nowhere...



    Any ideas?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $alpha neq 0$



      Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:



      Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$



      Ideas:



      Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore



      $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:



      $int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$



      and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$



      But this leads nowhere...



      Any ideas?










      share|cite|improve this question









      $endgroup$




      Let $alpha neq 0$



      Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:



      Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$



      Ideas:



      Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore



      $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:



      $int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$



      and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$



      But this leads nowhere...



      Any ideas?







      real-analysis measure-theory lebesgue-integral lebesgue-measure






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 13 at 19:43









      MinaThumaMinaThuma

      1508




      1508






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You made a small mistake when integrating the indicator function.
          $$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
            $endgroup$
            – MinaThuma
            Jan 13 at 19:56








          • 2




            $begingroup$
            @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
            $endgroup$
            – angryavian
            Jan 13 at 19:59











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072433%2fshow-int-mathbb-rdf-alpha-xd-lambdadx-frac1-alphad-int%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          You made a small mistake when integrating the indicator function.
          $$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
            $endgroup$
            – MinaThuma
            Jan 13 at 19:56








          • 2




            $begingroup$
            @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
            $endgroup$
            – angryavian
            Jan 13 at 19:59
















          1












          $begingroup$

          You made a small mistake when integrating the indicator function.
          $$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
            $endgroup$
            – MinaThuma
            Jan 13 at 19:56








          • 2




            $begingroup$
            @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
            $endgroup$
            – angryavian
            Jan 13 at 19:59














          1












          1








          1





          $begingroup$

          You made a small mistake when integrating the indicator function.
          $$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$






          share|cite|improve this answer









          $endgroup$



          You made a small mistake when integrating the indicator function.
          $$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 13 at 19:49









          angryavianangryavian

          41k23380




          41k23380












          • $begingroup$
            Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
            $endgroup$
            – MinaThuma
            Jan 13 at 19:56








          • 2




            $begingroup$
            @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
            $endgroup$
            – angryavian
            Jan 13 at 19:59


















          • $begingroup$
            Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
            $endgroup$
            – MinaThuma
            Jan 13 at 19:56








          • 2




            $begingroup$
            @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
            $endgroup$
            – angryavian
            Jan 13 at 19:59
















          $begingroup$
          Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
          $endgroup$
          – MinaThuma
          Jan 13 at 19:56






          $begingroup$
          Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
          $endgroup$
          – MinaThuma
          Jan 13 at 19:56






          2




          2




          $begingroup$
          @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
          $endgroup$
          – angryavian
          Jan 13 at 19:59




          $begingroup$
          @MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
          $endgroup$
          – angryavian
          Jan 13 at 19:59


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072433%2fshow-int-mathbb-rdf-alpha-xd-lambdadx-frac1-alphad-int%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          'app-layout' is not a known element: how to share Component with different Modules