Show $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$
$begingroup$
Let $alpha neq 0$
Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:
Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$
Ideas:
Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore
$int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:
$int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$
and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$
But this leads nowhere...
Any ideas?
real-analysis measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $alpha neq 0$
Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:
Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$
Ideas:
Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore
$int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:
$int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$
and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$
But this leads nowhere...
Any ideas?
real-analysis measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $alpha neq 0$
Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:
Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$
Ideas:
Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore
$int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:
$int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$
and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$
But this leads nowhere...
Any ideas?
real-analysis measure-theory lebesgue-integral lebesgue-measure
$endgroup$
Let $alpha neq 0$
Use $|alpha|^{d}lambda^{d}(B)=lambda^{d}(alpha B)$ $(*)$ to:
Show that $int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=frac{1}{|alpha|^{d}}int_{mathbb R^{d}}f(x)dlambda^{d}(x)$
Ideas:
Let $fgeq0$ and measurable then we can find $(g_{n})_{n}$ of step functions that approximate $f$, i.e. $sup g_{n}:=g=f$. Therefore
$int_{mathbb R^{d}}f(alpha x)dlambda^{d}(x)=int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)$ and by monotone convergence, we get:
$int_{mathbb R^{d}}g(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}int_{mathbb R^{d}}sum_{i=1}^{N}alpha_{i}chi_{A_{i}}(alpha x)dlambda^{d}(x)=sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})$
and using $(*)$ this means $sum_{i=1}^{N}alpha_{i}lambda^{d}(A_{i})=|alpha|^{d}sup_{g_{n} in E, 0 leq g_{n} leq f}sum_{i=1}^{N}alpha_{i}lambda^{d}(alpha^{-1}A_{i})$
But this leads nowhere...
Any ideas?
real-analysis measure-theory lebesgue-integral lebesgue-measure
real-analysis measure-theory lebesgue-integral lebesgue-measure
asked Jan 13 at 19:43
MinaThumaMinaThuma
1508
1508
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You made a small mistake when integrating the indicator function.
$$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$
$endgroup$
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
2
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072433%2fshow-int-mathbb-rdf-alpha-xd-lambdadx-frac1-alphad-int%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You made a small mistake when integrating the indicator function.
$$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$
$endgroup$
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
2
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
add a comment |
$begingroup$
You made a small mistake when integrating the indicator function.
$$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$
$endgroup$
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
2
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
add a comment |
$begingroup$
You made a small mistake when integrating the indicator function.
$$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$
$endgroup$
You made a small mistake when integrating the indicator function.
$$int chi_{A_i}(alpha x) , dlambda^d(x) = lambda^d(A_i/alpha) = |alpha|^{-d} lambda^d(A_i).$$
answered Jan 13 at 19:49
angryavianangryavian
41k23380
41k23380
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
2
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
add a comment |
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
2
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
$begingroup$
Thanks for that. Is there an intuitive explanation why $int chi_{A_{i}}(alpha x)dlambda^{d} x=lambda^{d}(A_{i}/alpha)$
$endgroup$
– MinaThuma
Jan 13 at 19:56
2
2
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
$begingroup$
@MinaThuma Try checking that $chi_{A_i}(alpha x ) = chi_{A_i / alpha}(x)$ for all $x$.
$endgroup$
– angryavian
Jan 13 at 19:59
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072433%2fshow-int-mathbb-rdf-alpha-xd-lambdadx-frac1-alphad-int%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown